
Cackle: Analytical Workload Cost and Performance Stability
With Elastic Pools

Matthew Perron
MIT CSAIL

USA
mperron@csail.mit.edu

Raul Castro Fernandez
University of Chicago

USA
raulcf@uchicago.edu

David DeWitt
MIT CSAIL

USA
david.dewitt@outlook.com

Michael Cafarella
MIT CSAIL

USA
michjc@csail.mit.edu

Samuel Madden
MIT CSAIL

USA
madden@csail.mit.edu

ABSTRACT
Analytical query workloads are prone to rapid fluctuations in re-
source demands. These rapid, hard to predict resource demand
changes make provisioning a challenge. Users must either over pro-
vision at excessive cost or suffer poor query latency when demand
spikes. Prior work shows the viability of using cloud functions to
match the supply of compute to the workload demand without
provisioning resources ahead of time. For low query volumes, this
approach is less costly at reasonable performance compared to pro-
visioned systems, but as query volumes increase the cost overhead
of cloud functions outweighs the benefit gained by rapid elasticity.
In this work, we propose a novel strategy combining rapidly scalable
but expensive resources with slow to start but inexpensive virtual
machines to gain the benefit of elasticity without losing out on the
cost savings of provisioned resources. We demonstrate a technique
that minimizes cost over a wide range of workloads, environmental
conditions, and compute costs while providing stable query per-
formance. We implement these ideas in Cackle and demonstrate
that it achieves similar performance and cost per query across a
wide range of workloads, avoiding the cost and performance cliffs
of alternative approaches.

ACM Reference Format:
Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella,
and Samuel Madden. 2024. Cackle: Analytical Workload Cost and Perfor-
mance Stability With Elastic Pools. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Analytical query workloads can have rapid fluctuations in resource
demand. This can be caused by a set of reporting queries submitted
simultaneously, a join output requiring a large amount of memory,
or a new ad-hoc query operating over a massive dataset. This is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0 100 200 300 400 500
Query Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Co
m

pl
et

ed

Databricks SQL Small 5 Clusters
Databricks SQL Small Autoscaling
Cackle Autoscaling

Figure 1: Latency of queries on Cackle, Databricks SQL small
with five clusters, and Databricks SQL Auto-scaling in an
hour-long workload of 1500 TPC-H queries.

especially challenging in data lakes where input data can be read
from any source in cloud storage at any time, making query input
sizes, and associated resource demands, unpredictable. Cloud func-
tion services such as Amazon Lambda [10] allow users to rapidly
marshal thousands of cores of compute and terabytes of memory
in a matter of seconds. Some prior work [24, 27] has demonstrated
the low cost and reasonable performance of this approach for work-
loads with low query volumes, even when intermediate state needs
to be exchanged through cloud object storage.

As query volumes increase, the cost savings due to elasticity are
eclipsed by the cost premium of using elastic resources. Because a
large query may arrive at any moment, resource demands fluctuate
in rapid, often unpredictable, bursts. These bursts remain even in
workloads with many concurrent queries. Workloads that contain
primarily user generated queries are particularly difficult to predict
as queries may arrive at irregular intervals.

While current popular analytical query processing systems have
auto-scaling features to handle changes in demand, this happens
at a coarse granularity, adding a few nodes or a cluster at a time,
only after queries are queued, and removing these resources after
idle for several minutes. As new nodes and clusters take tens of
seconds to minutes to come online, and only are spawned after
a cluster is saturated [5, 23, 26, 29], these auto-scalers are poor
at responding to transient workload changes, and queries suffer
significantly diminished performance until new hardware can be
provisioned. Furthermore, clusters or nodes that are spun up to
match an increased demand are slow to shut down [1], presumably
to avoid frequently starting up and shutting down nodes. For ex-
ample, in a Databricks SQL Pro small warehouse with auto-scaling,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

the 80th percentile of queries is more than an order of magnitude
slower than on an over-provisioned warehouse with five clusters.
We show a CDF of the queries in this workload in Figure 1.

In this paper, we instead propose a novel hybrid technique, called
Cackle, where persistent demand is serviced by provisioned virtual
machines, but rapid demand spikes are serviced with elastic pools
of resources, such as AWS Lambda [10]. The elastic pool allows
a system to be highly responsive to demand without incurring
a significant increase in cost. Thus, we avoid the cost instability
of fixed over-provisioning and the performance instability of cur-
rent auto-scaling approaches. However, this comes with several
challenges. In particular the system must handle rapid changes in
resources. Cackle must make allocation decisions to minimize cost
under a range of workloads, cost conditions, and environmental
conditions. We use a strategy that adapts to these varying condi-
tions by choosing among a family of simple strategies over the
measured historical workload. We show that our approach gains
the benefit of rapid elasticity of resources without losing the per-
formance benefit of over-provisioning, and adapts well to a variety
of workload and environmental situations. For example, Cackle
achieves similar performance to an over-provisioned Databricks
SQL warehouse despite starting with no compute running at the
start of the workload, as we see in Figure 1. We will also show that
Cackle achieves cost stability across a range of workloads.

In summary, the contributions of this work are (1) a demonstra-
tion of the cost and performance stability of this technique under
a range of different workloads and environment variables; (2) an
analysis of the impact of varying cost characteristics of the compo-
nents of this model; (3) a novel approach for minimizing cost using
a family of simple strategies; (4) an implementation of a hybrid
query execution engine that validates the findings of our model
and technique; (5) experimental results showing that elastic pools
allow systems to achieve cost and performance stability across a
range of workloads in a real implementation.

2 BACKGROUND AND MOTIVATION
Analytical query workloads are comprised of a spectrum of queries
of differing cost, and with differing latency tolerances. Some batch
queries can have their execution delayed for hours to save on cost,
while many ad-hoc queries would impair analyst productivity if de-
layed too long. Understanding this, modern cloud analytical DBMSs
allow users to place queries into queues of different priorities. This
can be effective at allocating available resources preferentially to
critical queries. But if there are a sudden influx of latency-sensitive
queries and not enough resources to serve them, then queries in-
evitably experience higher delays. Because these queries are sub-
mitted at irregular intervals it is difficult to predict when these
spikes in demand will occur.

This query mix results in a resource demand curve over time.
A provisioning of resources that falls below this curve results in
delayed queries, missed SLAs and overall poor user experience.
On the other hand, a provisioning that exceeds demand results in
excessive cost. Because of the inherently difficult to predict nature of
query arrivals and when demand for resources will spike, choosing
a good provisioning is a challenging task.

While modern cloud analytical systems have auto-scaling fea-
tures that can respond when a system is overloaded, allocating
new clusters or nodes takes tens of seconds to minutes. To avoid
these slowdowns in important queries, system administrators can
over-provision, but this means paying a consistently higher cost
for these systems just to handle demand spikes for that may only
last a few seconds.

With an infinitely scalable pool of compute resources that can
instantaneously start and stop, systems can service this underlying
demand curve exactly. Queries can execute immediately, never
sitting in a queue, and idle resources can be immediately stopped,
avoiding the cost of over-provisioning. Such pools of resources are
already available. Cloud function services like AWS Lambda can
allocate new resources extremely quickly, and prior work [24, 27]
has shown how they can be used to build query execution engines.

Starling [27] and Lambada [24], showed that the high per-query
costs of these rapidly scalable systems made them too expensive
for all but the most infrequent workloads. This is the result of two
factors. First, the cost of a time-unit of compute on cloud functions
ranges between 3 and 10x as much as the equivalent on-demand or
spot priced instances. Second, because of networking limitations on
the elastic pool, data must be exchanged through an intermediate
service, such as Amazon S3 [6], driving up cost. An ideal system
would have the elasticity of an unlimited pool of compute with the
cost of a provisioned system.

The purpose of our technique is to deliver on this goal, to mini-
mize the cost of a system for serving a wide range of workloads and
environmental conditions, such as varying startup times of new
virtual machines and the relative costs of elastic pools versus provi-
sioned servers. Furthermore, the system should be robust when the
workload or environmental variables change, and should execute all
queries with performance similar to a dedicated, right-sized cluster.

2.1 Workload Examples
OLAP workloads tend to process vast volumes of data. Running
a single new query on a large volume of data may significantly
increase the resource demand of the system. Modern data archi-
tectures make this problem more difficult as data is stored long
term in cloud storage services like Amazon S3 [6], Google Cloud
Storage [18], or Azure Blob Storage [11]. Therefore, a query can be
executed against any data in cloud storage at any time.

The predictability and performance demands of queries on OLAP
systems vary widely. We classify queries in three broad categories.

• Batch Queries These include queries that can tolerate high
latency and can thus be executed on whatever spare, inexpensive
resources are available. For this type of query, delaying queries
while resources start up is not an issue. These queries might include
regular reports or even systemmaintenance jobs. These queries will
benefit least from the availability of an elastic pool of compute, as
the lack of tight latency requirements means that it is less expensive
to wait until virtual machines can be started.

• Periodic Queries These include queries from a template that
are submitted at regular intervals, often originating from dash-
boards or other automated sources. Queries of this type are highly
predictable in their arrival time and resource requirements. These
queries may gain some benefit from elastic pools depending on

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

0 20 40 60 80 100 120 140 160
Hour

0

5

10

15

Co
nc

ur
re

nt
 Q

ue
rie

s

115.00 115.25 115.50 115.75 116.00 116.25 116.50 116.75 117.00
Hour

0

5

10

15

Co
nc

ur
re

nt
 Q

ue
rie

s

Figure 2: Number of concurrent queries in the startup work-
load with the full workload above and a two-hour window
of the workload below.

their resource requirements and the frequency of queries. The less
frequent the queries, the more helpful an elastic pool will be.

• Interactive Queries These queries include those submitted by
a user directly or through a set of tools. An example of this might
be a data scientist using Tableau [30] to analyze a dataset. These
queries are characterized by larger variability in arrival times, data
set sizes, and query complexity. User productivity depends on these
queries completing within a few seconds. These queries would
expect to see the largest benefit from an elastic pool of compute.
Since they are human-generated, arrival times, rates, and input
sizes of these queries are difficult to predict. While there may be
repeated executions of some queries within an interactive session as
users refine or drill down on previous results, the arrival of sessions
themselves is quite unpredictable.

Below we present traces from three real-world workloads that
demonstrate a mixture of the above query types. These traces do
not include individual queries, but instead contain data on their
resource utilization or query start and end times.While not a perfect
sampling of analytical query workloads, these workloads highlight
key properties of analytical query workloads:

(1) Workloads contain rapid spikes and drops in demand for
resources that are difficult to predict.

(2) Workloads contain periodic increases and decreases in de-
mand in cyclical patterns.

(3) Demand spikes and periodic workload changes can cause
queries to queue until resources become available.

Unfortunately the metrics provided by the owners of these systems
differ and cannot be compared directly without major assumptions.
However, each provides evidence of periodicity and the unpre-
dictability of resource requirements and query arrival rates.

2.1.1 Startup Workload. The workload in Figure 2 is a trace of
queries from an AWS Redshift data warehouse at a startup over the
course of a week in May 2022. The trace contains only the start and
end time of queries. The queries running against this database are
a mixture of analyst queries and dashboards. Thus, there is some

0 50 100 150 200
Hour

0

100

200

300

Co
nc

ur
re

nt
 Q

ue
rie

s

72.00 72.25 72.50 72.75 73.00 73.25 73.50 73.75 74.00
Hour

0

100

200

300

Co
nc

ur
re

nt
 C

PU
s

Re
qu

es
te

d
(T

ho
us

an
ds

)

Figure 3: Number of concurrent CPUs requested in the Al-
ibaba 2018 workload with the full workload above and a
two-hour window of the workload below.

0 50 100 150 200 250 300 350
Hour

0

500

1000

Co
nc

ur
re

nt
 N

od
es

 R
eq

ue
st

ed

150.00 150.25 150.50 150.75 151.00 151.25 151.50 151.75 152.00
Hour

0

500

1000

Co
nc

ur
re

nt
 N

od
es

 R
eq

ue
st

ed

Figure 4: Number of nodes requested in the Azure Synapse
2023 workload with the full workload above and a two-hour
window of the workload below.

regularity. Interestingly this workload leaves the cluster idle or with
a single query most of the time and the cluster is over-provisioned
in order to meet performance requirements. The figure shows a plot
of the number of concurrent queries executing on the warehouse.

2.1.2 Alibaba 2018 Workload. The 2018 Alibaba cluster trace [3]
provides data on jobs and tasks in a cluster computing workload
over the course of a week. We measure the number of concurrent
CPUs requested by all jobs in the system. This allows us to see
the daily periodicity of the workload. Like the startup workload
above, there is a periodic increase in resource demand each day,
with unpredictable large spikes in demand that happen regularly.

2.1.3 Azure Synapse SQL Workload. Figure 4 shows the trace of a
workload on an Azure Synapse SQL Cluster [2, 12] over the course

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

of two weeks in 2023. The plot shows the number of concurrent
nodes requested for all queries submitted to the system. In this
data warehousing workload, we see resource demand peak each
day, with slightly more demand on weekdays than weekends. In
addition, this workload has rapid unexpected spikes at irregular
intervals that cause resource demands to double or triple in the
course of a few minutes. These rapid changes in workload lead to
many queries queuing before execution.

2.2 Elastic Pools
Given the rapid changes we see in real world workloads, an elastic
pool of resources can help to alleviate poor performance caused by
rapid demand spikes. An elastic pool of compute resources should
grant users near instantaneous access to as many resources as re-
quested, allowing a user to burst out computation. In general, we
expect elastic pool resources to be available within a second. Gen-
eral purpose elastic pools are available in cloud function services
like Amazon Lambda [10] and Google Cloud Functions [17].

Elastic pools can also be built on a service level. For instance,
Redshift Spectrum [13] is a system in production today that makes
use of a large multi-tenant pool of workers shared between users
in a cloud region and is used to read user data from external tables.

Our technique requires elastic pools to have two properties:
(1) Immediate Availability: Resources must usable at a latency

low enough that the performance of the workload is mini-
mally impacted. This ensures that the resources are available
as soon as demand rises.

(2) Fine-Grained usage: Resources should not be billed after they
become idle. This keeps the cost of using the pool low.

Existing services like AWS Lambda provide these properties,
but at an additional cost that covers the operation of the resource
when it is not provisioned to a user. As a result, resources from
an elastic pool are more expensive per unit than their provisioned
equivalents. Running a function on AWS Lambda with one vCPU
and 4GB of DRAM costs $0.24 per hour [10] while the spot price
of a similar VM, c5.large in us-east-1 was only $0.04 in Feb
2023 [4], six times less expensive. However, these prices are subject
to change over time, for example, in April 2023, the price of the
same instance increased to $0.06, an increase of 50%, while an on-
demand instance was $0.085. Any system that uses these elastic
pools must be sensitive to these cost fluctuations.

Because of the cost premium of using an elastic pool, it is in-
efficient to exclusively use these resources, particularly when the
cost differential is high. Elastic pools are best at servicing demand
that is unexpected and cannot be delayed easily. As we will show
in Section 5, using elastic pools to handle bursts, rather than over-
provisioning dedicated instances, can be less expensive for many
workloads despite their higher cost per unit of resources.

3 HYBRID SYSTEM DESIGN AND
ASSUMPTIONS

Cackle is designed to address the resource spikes that are endemic
to analytical query workloads while minimizing the overall cost of
the system. It achieves this by using both provisioned resources and
elastic pools. It chooses a provisioning of resources that minimizes
cost for a wide range of workloads and environmental conditions.

In this section we describe the system design of Cackle and the
assumptions that inform this design. Cackle is a query execution
engine. It receives physical query plans and executes the plan on
available resources. As batch jobs can be delayed until provisioned
resource become available, we focus on reporting queries and ad-
hoc user-generated queries where low query latency is essential.

Cackle executes queries by breaking up its operators into a DAG
of stages. Each part of a query executes as a stage with one or more
tasks that can be executed concurrently. Task sizes are chosen so
that they fit into fixed sized containers. Data must be exchanged
between stages. Each task processes a subset of the stage’s input
data and produces an output to be consumed by future stages or
the end user. Tasks are scheduled on available operators, and run
to completion. Each stage must wait for all tasks in its upstream
stages to complete before its tasks are eligible to be scheduled. This
execution model is similar to Spark or Presto.

Cackle has three components responsible for coordination, exe-
cution, and shuffling respectively. We explain each layer’s respon-
sibilities and interactions below.

• Coordinator. The coordinator has two main responsibilities.
First, it receives query requests, and schedules computation on pro-
visioned machines and the elastic pool depending on the resource
availability. Second, it monitors the workload and makes resource
provisioning decisions to minimize the overall cost of the workload
during execution. It runs on a single small provisioned VM.

• Execution Layer. The execution layer is composed of provi-
sioned VMs and an elastic pool of compute resources. Tasks are
scheduled first on available provisioned VMs. If none are avail-
able then the task is executed on the elastic pool. We assume that
provisioned machines have a delay between their requested time
and the time they are provisioned and able to execute tasks. Once
started, we are billed for their usage until terminated. VMs have a
minimum billing time of one minute, meaning there is no value to
shutting started idle instances down unless they have been running
for at least that duration. Compute from the elastic pool is available
instantly and is billed at the millisecond granularity. We assume
that the cost per second of the elastic pool is some factor more
expensive than the equivalent time on a VM.

• Shuffling Layer. The shuffling layer uses provisioned virtual
machines dedicated to temporarily storing intermediate shuffle
state. The shuffling layer is required in Cackle as the elastic pool of
computewe use, AWS Lambda, is unable to exchange data directly. It
also allows the system to independently scale intermediate storage
and compute. We call these provisioned virtual machines in the
shuffling layer “shuffling nodes”. When insufficient shuffling nodes
are available, the compute layer of Cackle instead shuffles through
cloud object storage systems like Amazon S3 using the method
outlined in Starling [27]. We use a mix of VMs and S3 to reduce the
cost of shuffling. VMs are used to reduce the cost of S3 requests and
S3 is used to absorb excessive requests. Shuffling nodes are billed in
the sameway as provisioned virtual machines in the execution layer.
The elastic pool of the shuffling layer uses cloud object storage and
is billed for each read and write request.

We describe how queries are executed using the above layers
below and the necessary assumptions of Cackle below.

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

3.1 Work Scheduling and Query Execution
Query execution begins when a user submits a query execution
plan to the coordinator. The plan consists of a directed acyclic graph
(DAG) of stages. Each stage has one or more tasks that must be
executed to completion before its dependent stages can be sched-
uled. The coordinator begins by scheduling tasks in stages without
dependencies, e.g., base table scans. When a stage’s dependencies
have completed, its tasks are scheduled. This is repeated until all
stages have completed and results are returned to the user.

Unlike other query execution engines that use this DAG of stages
execution model, such as Apache Spark [32], tasks never wait in
a scheduling queue. This is possible through the use of the elastic
compute pool. This execution model assumes that requests made
to the elastic pool are satisfied quickly enough that it has minimal
impact on a query’s overall performance. We also assume that
a given task will have an equivalent runtime on similarly sized
compute from the elastic pool and on a provisioned instance.

Like other cloud analytical query processing engines, base table
data is stored and read from cloud object storage services. Inter-
mediate data, however, is either exchanged through the shuffling
layer. The coordinator chooses a provisioning of shuffling nodes by
observing a trace of the volume of data shuffled and the number of
writes to cloud storage.

3.2 Cost Models and Environmental Conditions
The coordinator is responsible for responding to varying workload,
cost, and environmental conditions. While the system assumes that
performance will be equivalent regardless of execution environ-
ment, the cost can be vastly different. If the demand for compute is
flat over time, provisioning virtual machines to service that demand
will be less expensive than using compute from the elastic pool.
It is the responsibility of the coordinator to minimize the cost of
query execution given the workload and execution environment.

The cost of a given workload and resource provisioning are sub-
ject to the cost model and other properties of provisioned resources
and the elastic pool. In our work we assume the cost model of Ama-
zon Web Services including Lambda [10], EC2 Spot Instances [4],
and S3 [6]. For instance, AWS Lambda cloud functions typically
begin within 100ms and are billed at the millisecond granularity.
However, if the properties or cost model of the underlying services
change then a system has to adapt to these changes. The techniques
we describe in the following sections can be adapted to new scenar-
ios as long as there is an elastic pool of resources that are granted
to the user instantly, the cost models of both provisioned resources
and the elastic pool are known, and the behavior, in particular the
time to start new provisioned resources is predictable. Given these
assumptions we describe considerations for a strategy to minimize
cost in the following section.

4 APPROACHES TO PROVISIONING
Most cloud analytics systems delay work until provisioned re-
sources become available, but because Cackle is targeted at inter-
active workloads, it executes work as soon as it arrives. Therefore,
the goal of an allocation strategy for Cackle is not to improve
query latency or performance but to reduce overall cost. In
this section we describe the main factors that impact cost, and

develop a strategy able to respond to the properties of analytical
workloads we described in Section 2. We begin by describing the
cost and environmental factors that impact strategy design.

4.1 Cost Factors
We assume that any given task executing in the compute layer
has access to the same compute resources and its performance
is the same amount regardless if it is scheduled on a provisioned
virtual machine (VM) or in the elastic pool. We assume that the cost
structure is the same as that on AWS [7]. Specifically, provisioned
VMs have a latency between the time they are requested and the
time they become available to execute tasks. Users are charged
for these instances from the time they startup until the time they
are shutdown, but have a minimum billing time. In AWS we have
observed that the time to start tens of VMs is around three minutes.
The minimum billing time is set to be one minute. The elastic
pool is available in less than a second, is charged at a millisecond
granularity, and has no minimum billing time. However, as we
describe above, this flexibility comes with an increased cost.

Thus, a strategy should choose, moment-by-moment, a target
allocation of VMs. If the target is less than the number currently
allocated, nodes will be terminated once idle. If the target is larger,
then VMs will be requested from the cloud provider, and will start
after the delay time. If the resource demand is larger than the
current allocation, work will be scheduled on the elastic pool.

We consider two naive strategies and explain why they are a
poor match for these conditions and present our approach below.

4.2 Fixed Strategies
A fixed strategy chooses a provisioning of virtual machines at the
beginning of the workload and the target remains fixed throughout
workload execution. Thus, the number of virtual machines never
changes. A challenge with fixed strategies is choosing the correct
fixed provisioning, choosing too large or too small a provisioning
can have a large impact on cost. Obviously, a fixed strategy does
not change with the workload and, in a periodic workload, may be
significantly under-provisionedwhen the workload peaks, and over-
provisioned during workload troughs. Ideally a strategy should
adapt to the workload as it changes, and should not require a user
to know the details of their workload a priori.

4.3 Workload-Adaptive Strategies
Instead of fixed strategies, a workload adaptive strategy considers
the recent workload in order to set a provisioning target. We rep-
resent the demand of the system as the number of compute nodes
requested by the query plan at a second-by-second granularity.
Note that this is not the same as CPU or other resource utilization
but a record of the total resource requests of the workload. An ex-
ample of a workload adaptive strategy is to set the target capacity
of resources as the mean of the resource demand over the previous
ten minutes. These strategies have the advantage that they are able
to adapt as workloads change over time, more closely matching the
workload demand as it changes. However, workload-adaptive strate-
gies are insensitive to cost and execution environment. Changes in
the cost of virtual machines or the elastic pool have no impact on
their target. If the cost of virtual machines were to increase sharply,

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

an ideal strategy should use more of the elastic pool as the relative
cost has decreased. Similarly, if the startup time of virtual machines
changes, the strategy will not adapt to decrease cost.

Note that there is a difference between these strategies and those
that are currently used by most auto-scaling systems. Because sys-
tems like Redshift [20], Databricks [16], or Snowflake [15] delay
work rather than use an elastic pool, they do not make allocation
decisions directly based on this demand history. Rather, they begin
with a fixed set of resources and provision new nodes only when
work begins to queue.

Similar to the fixed strategies that cannot adapt to the workload,
these workload-adaptive strategies do not adapt to changes in en-
vironment. However, some configurations may be better adapted
to some environmental conditions than others.

4.4 Dynamic Cost-Based Strategy
No single workload-adaptive strategy is able tominimize cost across
all execution environments. The cost of any given strategy will
depend on the relative costs of VMs and the elastic pool, and other
factors including the startup time of VMs. Instead of choosing
a single approach, we propose a cost-based meta-strategy that
chooses the least costly of a family of workload-adaptive strategies
given the observed workload and execution conditions. We require
a way to determine what the cost of each would have been. This
allows us to naturally adapt to varying conditions, such as changes
in price or startup times, without fixing them as parameters of
our model. In the remainder of this section we describe how our
meta-strategy accomplishes this. We begin by describing how we
collect a history of our workload.

4.4.1 Workload History. We collect a history of the number of tasks
requested by running queries at a second-by-second granularity.
This number increases when tasks are scheduled, and decreases
when tasks complete. We assume that each task can run either on
a VM or in the elastic pool. We also assume that the latency of this
task is not dependent on this decision. We record the maximum
number of concurrent tasks each second for the duration of our
workload and call this the workload history.

4.4.2 Target and Allocation Histories. Eachworkload adaptive strat-
egy takes the workload history as input and produces a target allo-
cation of VMs. We record this allocation in a target history for each
strategy. Assuming that we know the time required to start a VM
(the latency between the request and the moment it is available to
execute tasks), we can use this history to make an accurate predic-
tion of what the number of VMs would have been available over the
course of the workload had we chosen this strategy. We call this
prediction the allocation history.

4.4.3 Cost Calculation. We determine each strategy’s predicted
cost over the workload history using the predicted allocation history
of each strategy, and the cost model (historical prices) of both VMs
and the elastic pool. We can generate an accurate prediction what
the cost of each strategy would have been had we chosen it from the
beginning of the workload. We assume that any time the workload
history is less than the allocation history tasks would have executed
on virtual machines. Conversely, when theworkload history exceeds
the allocation history, the excessive tasks would have been executed

on the elastic pool. We can predict accurately the cost of this strat-
egy over the course of the workload history because the cost of
VMs and the elastic pool are known from historical data.

If environmental or cost conditions change, we can recompute
each strategy’s allocation history and determine the cost of the
strategy under the new conditions with the above method.

4.4.4 Meta-Strategy Overview. We now have a way to determine
the cost of different strategies given a history, cost models, and
environmental conditions. What remains is to select a strategy
from our family. We employ multiplicative weights [9] to make a
choice among our family of strategies.

Multiplicative weights is a randomized algorithm for choosing
among a family of “experts” given cost feedback over time. It pro-
vides a guarantee that the algorithm overall has an expected cost
that is at most an additive factor over the best expert in the family.
The algorithm does this by maintaining a weight for each expert
and at each time step randomly choosing a expert based on the
distribution of these weights. At each time step 𝑇 it updates each
expert’s weight according to the cost incurred by the expert in the
preceding interval. Specifically, it multiplies the weights by a factor
𝑤𝑇+1 = 𝑤𝑡 (1 − 𝜖𝐶), where 𝐶 is the normalized cost, or penalty, of
each expert in the preceding interval. The algorithm then chooses
an expert at random using a distribution according to the weights
set above. Multiplicative weights guarantees that the overall strat-
egy is within a factor of 𝜌𝑙𝑛(𝑛)/𝜖 where 𝜌 of the best performing
expert where 𝜌 is the maximum cost incurred per round, 𝑛 is the
number of experts, and 𝜖 <= 1/2.

In our case, each “expert” is a member of our family of strategies
and the cost incurred is simply the cost incurred by each strategy
over the preceding time period, as measured by our cost calculation.

A brief summary of our strategy follows.

(1) Generate a target from each strategy in our family given the
workload history and record its target history.

(2) Given the observed VM startup time and the target history,
generate an allocation history for each strategy.

(3) With the cost of VMs and the elastic pool, generate the cost of
each strategy for the workload history with the target history

(4) Update the weights using the cost of each strategy.
(5) Randomly choose the current allocation target using the

distribution of weights in the preceding step.

Thus we guarantee that we choose a strategy that is close to the
best in the family. We execute the above meta-strategy at regular
intervals throughout the workload, every five seconds in Cackle.
However, the efficacy of this meta-strategy also depends on the
strategies available.

4.4.5 Choice of Strategy Family. For the above meta strategy to
be effective at reducing cost, we need to ensure that our family of
strategies can produce a low cost for a wide range of conditions.
While any number of strategies could be effective, there are somewe
should include to ensure it adapts well to a wide range of workloads.
For instance, we should include a strategy that will set a target
higher than any workload history seen in the workload history.
This is to handle increasing workloads. For instance, in a workload
history increasing linearly with time, the strategy that will minimize

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

cost must set a target number of VMs with more capacity than what
is seen in the history to account for the delay in starting VMs.

While we could consider a set of strategies that attempts to
predict the workload, we have found that a simpler set of strategies
is sufficient to significantly reduce cost. In particular we use a set
of “percentile” strategies with varying parameters. Each strategy
has three parameters: a “lookback” defined in seconds, a percentile,
and a multiplier. Each strategy takes as input the workload history
and calculates the given percentile over the last “lookback” seconds
of the history and multiplies it by the multiplier. We include in
set of strategies, percentiles from one to one hundred each with
a multiplier of 1.0, and 80th percentile strategy with multipliers
ranging from 1.1 to 20 to allow for provisioning more than what we
see in the history. For each of these parameters settings we include
a strategy with a lookback ranging from 10 seconds to an hour.
Thus, we have several hundred strategies in our family. We show
the robustness of our meta-strategy with this technique through
an analytical model in Section 5.

4.4.6 Cold Start Workload Considerations. At the beginning of the
workload, the meta strategy has no way to effectively differenti-
ate between strategies. This is less of a problem for Cackle than
others as tasks will simply execute on the elastic pool if VMs are
not available. As the history is growing in size during the initial
stages of the workload, the meta-strategy may fluctuate between
several strategies rapidly. This is reasonable as it is unclear what
the workload will look like given the limited amount of data avail-
able. This means that the first part of the workload may suffer from
higher cost than is optimal. One way to avoid this could be to add
an expected workload to the history to prime the meta-strategy. We
find that with relatively small VM startup times the overall effect
of this excessive cost is small. As the history grows, we find that
the meta-strategy typically settles on a single strategy as long as
the environmental conditions and costs remain the same.

5 STRATEGY ROBUSTNESS
Cackle is intended to execute a query workload at minimal cost for
a wide range of workloads and environmental conditions. For these
analytical query workloads, environmental conditions include the
time to start a new virtual machine, the cost premium of compute
from the elastic pool, and the minimum billing time of workers in
the elastic pool. In this section we describe our strategy for chang-
ing allocation based on these factors, build an analytical model
to test our strategies for a range of workloads, and explore how
our strategy compares to fixed, workload-adaptive, and an oracle
strategy. We also demonstrate how the ability to access an elastic
pool of resources to execute queries improves query latency with a
minimum additional cost.

5.1 Model Implementation
We generate a workload of queries arriving in a fixed window. The
start time of each query is chosen according to a distribution. Some
queries will be uniformly distributed in the fixed window. The
proportion of these queries is the baseline load. The remaining
query start times are selected at random from a sine distribution.The
goal of this distribution is to match workloads that we see in prac-
tice, with cyclical workloads and unexpected demand spikes. In

Default Workload Parameters
Workload Duration 12 Hours

Queries 16384
Baseline Load 30%

Period Of Query Arrivals 3 Hours
Default Environment Parameters
VM Startup Latency 3 Minutes

Minimum VM Billing Time 1 Minute
Cost of VM (2vCPUs) $0.03/Hour

Cost of Elastic Pool (2vCPUs) $0.18/Hour
Table 1: Default Workload and Environment Parameters for
our Analytical Model

particular, as we saw in in the startup and Alibaba 2018 workloads
in Figure 2 and Figure 3, queries arrive at unexpected times but
with some predictability in the rate of their arrivals.

The model tracks resource demands at a second-by-second gran-
ularity. It measures the number of concurrently running tasks, the
volume of data exchanged, and the number of messages between
tasks. It assigns this demand first to available provisioned resources;
any remaining demand is serviced by the elastic pool. The total
cost of the workload is calculated based on the runtime of the pro-
visioned resources and the use of elastic pools according to each
respective cost model. For instance, provisioned virtual machines
are charged by the second and have a minimum billing time of one
minute, while reads and writes to cloud storage that are used for
shuffling are charged by the request. Our cost models are based on
the corresponding AWS [7] services where Cackle is implemented
but could be trivially swapped out for other cost models.

We report the default values the analytical model uses for work-
load generation and the environment. in Table 1

We model the execution of each TPC-H [14] query with scale
factor 100. Data used tomodel each query is taken from an execution
of each query in our implementation on elastic pools, i.e., on AWS
Lambda with shuffling through Amazon S3. We execute each query
five times and collect runtime statistics from the execution of the
query with median runtime. We collect the duration of each task,
the dependencies between stages, the number of reads and writes
to cloud storage, and the size of data shuffled. We measure metrics
on shuffling to account for the cost associated with the shuffling
layer. Duration of tasks is rounded to the nearest second with a
minimum of one second.

We compare our dynamic strategy described in the previous
section against a set of alternative strategies. We label our strategy
dynamic. We compare against a set of fixed strategies that we la-
bel fixed_x where x is the number of virtual machines allocated
for the duration of the workload. Therefore fixed_0 corresponds
to all tasks executing on the elastic pool. We also compare with
workload-adaptive strategies. We use a mean strategy that takes
the mean of the previous five minutes of history and multiplies
with a constant y to get a target allocation, labeled mean_y. We also
include a simple predictive model,predictive, that computes a
linear regression over the previous five minutes, and sets a target
equal to the maximum of the predicted workload after the VM
startup time i.e., it attempts to predict the workload demand at the
time VMs are started. Finally, we compare against an oracle strategy

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

103 104 105

Number of Queries

102

103

Co
st

($
)

fixed_0
fixed_500
mean_2

predictive
oracle
dynamic (ours)

Figure 5: Cost of query workload, varying the number of
queries in the workload.

102 103 104

Period of arrivals(s)

150

200

250

300

350

400

450

Co
st

($
) fixed_0

fixed_500
mean_2

predictive
oracle
dynamic (ours)

Figure 6: Cost of query workload, varying the period of query
arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Baseline Load Percentage

150

200

250

300

350

400

450

Co
st

($
) fixed_0

fixed_500
mean_2

predictive
oracle
dynamic (ours)

Figure 7: Cost of query workload, varying the baseline load
of query arrival times.

with full knowledge of the upcoming workload that allocates the
number of provisioned instances in order to minimize the cost of
compute. It does not make modifications to the DAG of stages in
the query execution but instead takes the resource demand curve as
is minimizes cost only changing allocation. We label this strategy
oracle.

5.2 Compute Workload Changes
We now demonstrate how the dynamic strategy is robust to work-
load changes. We vary the number of queries, the period of query
arrivals and the baseline load of queries. The goal of our strategy
is to be as close to the oracle strategy as possible over a range of
workloads. To enhance clarity in the figures, we leave off strategies
that have similar properties to others in each plot.

100 101 102

Elastic Pool Cost Per Second Relative to VM

102

103

Co
st

($
)

fixed_0
fixed_500
mean_2

predictive
oracle
dynamic (ours)

Figure 8: Cost of Query workload, varying the cost of Lambda
relative to VM Cost.

5.2.1 Query Density. Figure 5 shows how the cost of strategies
changes with the number of queries in the workload. The Oracle
strategy outperforms all other methods when the number of queries
is low as it has perfect knowledge of when queries will arrive. As
the number of queries increases, the dynamic and mean strategies
converge as the workload becomes more regular. The fixed work-
loads have constant cost until the number of queries exceeds their
capacity and their cost grows. Their inability to adjust makes them
an expensive choice unless the actual demand closely matches
the fixed provisioning. For instance, fixed_500 approaches the
cost of oracle around 12,000 queries. This result indicates that
simply augmenting a fixed provisioning with an elastic pool will
achieve elasticity but at an exorbitant cost. The left portion of the
plot demonstrates that fixed provisioning can cost several times as
much as an elastic system over the same workload. Conversely, a
system exclusively using an elastic pool, namely fixed_0 can be
an order of magnitude more expensive than a system that is aug-
mented with provisioned instances when queries arrive frequently.
The dynamic strategy is the lowest cost across the range excluding
oracle, but the predictive strategy also performs well.

5.2.2 Period of Arrivals. Figure 6 shows how the cost of the system
changes for each strategy as the period of query arrivals changes.
Query arrival rates often peak daily as our example workloads in
Section 2 show. But workloads can also include other frequencies
of query arrival times. We see this in the startup workload in Fig-
ure 2 where a similar set of queries also arrives every 15 minutes.
The fixed strategies see little impact of this change while the peri-
odic strategy performs exceptionally poorly then the period wer
are training on coincides with the periods of arrivals resulting in
a larges spike. Because dynamic uses a family of strategies, it is
less subject to these effects and performs the best among tested
strategies, except the oracle.

5.2.3 Baseline Load. Figure 7 shows how the cost of various strate-
gies are impacted by making queries arrive more uniformly. As
the arrival rate of queries evens out and fewer queries exceed the
capacity of the fixed_100 allocation the cost decreases, this is true
to a lesser extent for fixed_500 also. However, other strategies see
little impact as the workload shifts.

5.3 Environment Changes
In addition to workload changes, the execution environment may
change with the same workload. One example is the relative price

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

0 100 200 300 400 500 600 700 800
VM Startup Time(s)

150

200

250

300

350

400

450

Co
st

($
)

fixed_0
fixed_500
mean_1
mean_2

predictive
oracle
dynamic (ours)

Figure 9: Cost of query workload, varying the startup time
of virtual machines

of provisioned resources to the elastic pool. An increase in the cost
of a VM or the decrease in the cost of the elastic pool can cause the
cost premium of the elastic pool to change. This is common. In the
period from Jan 1 to March 31, 2023 the spot price of a c5a.large
instance with 2vCPUs and 4GB of DRAM increased from $0.0343
to $0.0670 per hour, nearly doubling. The cost of AWS lambda for a
similar instance was fixed over the same period, making the relative
cost difference decrease from 7x to 3.6x the spot price of VM. All
other factors being equal, a sound strategy should respond to this
change by using the elastic pool more frequently.

5.3.1 Elastic Pool Costs. We show the impact of varying elastic
pool cost in Figure 8. If the elastic pool has equivalent cost to a
provisioned instance, it is never worthwhile to start a long-lived vir-
tual machine (unless there are caching benefits or other significant
performance gains). Thus, fixed_0, running only on the elastic
pool is tied for the least expensive. Cost insensitive strategies like
fixed_500 and mean_2 are significantly more costly when relative
cost of the elastic pool is close to the VM cost. As the cost premium
of the elastic pool grows relative to VMs, it is less costly to provision
VMs to execute some portion of tasks. The lower cost of dynamic
compared to fixed_0 and fixed_500 shows the risk of strategies
that either use exclusively VMs or the elastic pool. Our dynamic
strategy is significantly less expensive than both. The predictive
strategy performs well until the elastic pool increases in price. This
shows the risk of not considering changing costs when choosing a
strategy. Our dynamic strategy remains close in cost to the oracle
until elastic pool costs grow to more than 10x the VM. After this
the cost of any work executing on the elastic pool causes all but
the oracle strategy to grow rapidly.

5.3.2 Virtual Machine Start Time. Figure 9 shows the impact of the
latency of starting virtual machines on the cost of various strate-
gies. It is reasonable to expect that this might change over time
as improvements are made by cloud service providers. In our ex-
periments we find that VMs take around three minutes from their
request to run on AWS. Fixed strategies are, of course, unaffected
by this change as they never start or stop virtual machines. Simi-
larly, the oracle strategy is unaffected as it knows exactly when
instances should be started to service a given demand and this
is unaffected by how long the provisioned instance takes to start.
However, it does have meaningful impact on the mean strategies.
mean_2 is significantly more expensive than mean_1 when provi-
sioned instances are fast to start but much less expensive when

Startup Alibaba 2018 Azure
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Co
st

fixed_0
mean_1
predictive

dynamic (ours)
oracle

Figure 10: Cost of workloads, varying the startup time of
virtual machines. Normalized to the cost of fixed_0

18 20 22 24 26 28 30 32
95th percentile Query Latency(s)

50

75

100

125

150

175

200

225

Co
st

($
)

100

150

200

250

300

350

400

450 Work-Delaying Fixed
Cackle Oracle
Cackle Oracle Without Elastic Pool
Cackle Cost-Based Dynamic Strategy

Figure 11: Cost and latency of delaying strategies with fixed
provisioning vs Elastic Pool strategies. Each blue dot shows a
fixed provisioning with a different number of VMs, marked
regularly with arrows and labels.

virtual machines are very slow to start. dynamic is much closer
optimal for most startup times.

5.4 Example Real Workloads
We next compare the performance of different strategies on a set of
real world workloads we introduced in Section 2. As we do not have
access to the exact performance characteristics of these datasets we
made a series of assumptions. For the workload from the startup,
we had access only to start and end times of queries. We made the
simplifying assumption that each time a query starts it selects a
random TPC-H query at scale factor 100 and we proceed as we
have for the previous sections. In the Azure workload, we we given
how many “nodes” were requested at each time interval. Here we
assume that each “node” requested was the equivalent of 20 tasks
running, we then used this demand curve in our analytical model.
Finally, for the Azure synapse workload we had the number of
CPUs requested by all queries in the system. We assumed that one
CPU is equivalent to a single task, used this to generate a demand
curve, and proceeded using our analytical model. The results are
shown in Figure 10. We normalize to the cost of the fixed_0 strategy.
Besides the oracle, our dynamic strategy is either the best or within
1% of the best strategy.

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

5.5 The Cost of Delaying Work
Unlike Cackle, OLAP systems typically schedule work until the
system is fully utilized. Any additional work will be queued until
system resources are available either due to prior work completing
or new resources coming online. Thus, we consider the cost and
latency impact of delaying work. We model a workload delaying
system and demonstrate how Cackle is able to reach new points in
the space for some workloads. We use a query workload of 2048
queries over 12 hours with a baseline load of 30% and a period
of 12 hours. We show the latency and cost of this workload on a
work delaying system with fixed provisioning. We show a range
of fixed provisionings with blue dots, regularly labeling the fixed
number of VMs in Figure 11. In addition we compare an oracle
strategy that always ensures there are enough VMs to execute all
available tasks in workload as soon as they arrive, but does not have
access to an elastic pool. We label this strategy Cackle Oracle
Without Elastic Pool. Finally, we compare against an oracle
strategy with access to an elastic pool, labeled Cackle Oracle and
our dynamic strategy with an elastic pool (Cackle Cost-Based
Dynamic Strategy). Tasks are scheduled on a first in first out order
with priority given to the earliest submitted queries. Figure 11
shows the cost and 95th percentile latency of queries for these
strategies. No fixed strategy approaches the bottom left region.
That is, fixed strategies are unable to achieve the latency of an over-
provisioned system at the cost of an under-provisioned system.
Furthermore, our cost-based dynamic strategy is able to achieve the
same latency at a lower cost than the work delaying system even
when the work delaying system has perfect workload knowledge. This
is because the cost model of virtual machines requires a minimum
billing time of 60 seconds while the elastic pool allows for fine
grained billing. For short bursts of compute the cost premium of
the elastic pool is less expensive than paying for the minimum
billing duration of the same number of virtual machines.

5.6 Shuffling
We model the shuffling layer in a similar way to the compute layer.
The primary difference between modeling the cost of the shuf-
fling subsystem and the execution layer is that individual reads
and writes to caching nodes and the elastic pool are tracked for
maximum fidelity to the implementation we describe below. We do
this to account for the difference in the cost model of provisioned
shuffling nodes and cloud storage. Specifically, the shuffling nodes
have limited memory to store intermediate state and are charged
by the minute, while cloud object storage is billed per request and
has effectively unlimited storage. Because of the large cost of the
individual reads and writes to cloud storage, it is almost always
less expensive to over-provision VMs for the shuffling layer. For
this reason, instead of our cost-based strategy, we instead choose a
target number of shuffling nodes with sufficient memory to hold
the maximum amount of intermediate state seen in the workload
in the last 20 minutes. In addition, we never set a target of less
than 16GB of available shuffling node memory to ensure that some
shuffling nodes are always available to decrease the number of read
and write requests to cloud object storage.

6 DISCUSSION
In this section we describe the core assumptions and requirements
required for a system to integrate Cackle’s techniques. At it’s core,
Cackle is a method for deciding when to use an elastic pool of
resources that has close to equivalent performance to a provisioned
resource. While other execution environments may or may not
require a shuffling layer, or use a cloud function service directly,
they can still use the core technique. In particular many data ware-
housing providers keep a “warm pool” of nodes for their customers
or use a set of pre-allocated nodes for “serverless” workloads to be
executed on demand. These pools may use identical hardware to
provisioned instances, but are more expensive because they are pre-
provisioned to meet a rapid demand. Given the complexity of this
environment, including variability in the startup time of resources,
and the cost difference of the elastic pool and provisioned resources,
Cackle provides a method to choose the a split of provisioned and
elastic resources that minimizes workload cost.

Cackle requires the elastic pool to be immediately available to re-
act to a change in demand. Beyond this we assume only pricing for
the elastic pool and provisioned resources, as well as environmental
information including how long provisioned resources require to
start. While we do not currently consider the performance differ-
ences that might arise due to data locality, we believe that Cackle
could be extended in future work to account for these concerns.

7 EVALUATION
We evaluate Cackle by first ensuring that our analytical model
produces accurate results when compared to a real execution of
the same workload. We also ensure that the costs of executing
workloads on Cackle is within a reasonable margin of the cost of
an oracle strategy. Second, we compare the cost and performance
behavior on workloads with a varying number of queries to both a
modern data warehouse, Databricks SQL with fixed provisioning
and with autoscaling enable. We will show that Cackle achieves sig-
nificantly improved cost and performance stability across different
workloads compared to Databricks SQL.

7.1 Experimental Setup
The general outline of Cackle is given in Section 3, here we describe
the implementation details of our system. All experiments were
conducted on AWS in the us-east-1 region in a single availability
zone. We believe our techniques generalize and could be adapted to
other systems, we implemented our system using Starling [27] using
code shared with us by the authors. We considered implementing
our techniques on Spark [32], but we found that it took tens of
seconds to start a Spark Executor on AWS Lambda, our elastic
compute pool. This violated the first constraint on our elastic pool
we described in subsection 2.2 and made it a nonviable choice.
With a pre-warmed pool of spark workers, it should be feasible to
implement the same approach.

7.1.1 Base Tables. We store our base tables are Amazon S3 [6] in
ORC [25] format. We first generate the data with the TPC-H [14]
data generator in 100MB chunks. We then convert these files to
ORC format. We do not partition tables on join keys or sort data.

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

7.1.2 Compute Layer. The compute layer of Cackle is similar to
Starling [27] with some key differences. Instead of running exclu-
sively on AWS Lambda, tasks can also be run on provisioned virtual
machines. To achieve this, VMs in the compute layer run a server
that receives requests to execute tasks. Because these virtual ma-
chines and the Lambda functions must be able to exchange data
through the shuffling layer, we ensure that they are provisioned
in the same availability zone. AWS Lambda is configured to run
functions in the same virtual private cloud, availability zone and
security group as the other components of the system and uses a
memory size of 3GB at a cost of $0.18 per hour.

Instances are provisioned using spot instance requests to reduce
overall system costs. They are restricted to a single availability
zone to eliminate the excessive cost of cross AZ traffic. The request
specifies 2vCPU instances with at least 4GB of DRAM with some
instance types excluded due to low network throughput. To change
the number of provisioned instances the coordinator submits a
modification to the spot request to change the number of instances.
When a VM starts up it connects to the coordinator to signal its
availability. Afterwords, it accepts work until it is terminated.

We find that in our experiments 99% of lambdas start within
200ms. This satisfies our requirement for rapid availability we need
to implement Cackle

While our algorithm assumes that the performance of tasks will
be equal independent of where they are scheduled, we find that
VMs execute tasks 25% faster than on AWS Lambda. This is because
the actual instances of VMs are decided by the current spot prices
and may be more performant than the equivalent Lambda instance.
Similarly, shuffling through our caching layer results in query per-
formance 15% faster than without when the cache is significantly
over-provisioned. Of course the load on all components will im-
pact these results. Despite the divergence from our algorithmic
assumptions, we find that our approach still achieves the results
comparable to what we expect.

Tasks in the compute layer are given a list of available shuffling
nodes when executed. When a task needs to shuffle data to a suc-
cessive stage, it first attempts to write to the available shuffling
nodes. If full, the task instead writes its data to S3 using the same
technique as Starling and Lambada.

7.1.3 Shuffling. Distributed analytical query execution requires
compute nodes to exchange intermediate state in an all-to-all shuffle.
This occurs most frequently to execute distributed joins. While
other data warehouses shuffle data directly between the nodes in
the system [8], Cackle is not able to do so for two reasons. First,
the elastic pool we use in our compute layer cannot exchange data
directly, as the AWS Lambda disallows inbound connection requests.
Second, the aggregate memory in shuffle VMs may not be enough
to hold intermediate state when demand peaks. The shuffling layer
is needed to mitigate this limitation of our elastic pool.

Thus, we implement a distinct shuffling layer that temporarily
stores intermediate state. Like the compute layer, we use both a set
of provisioned resources and an elastic pool. As AWS Lambda is
unable to exchange data directly, we instead use S3[6] as an elastic
pool of compute. Starling [27] and Lambda [24] use S3 exclusively.
But for workloads with a larger number of queries, the cost of
using S3 can dominate the overall workload cost. This is because

S3 charges users by the number of PUT and GET requests. These
prices are high enough that it can account for half the cost of the
cost of query execution [27]. For a workload with many queries
and therefore many read and write requests, it is less expensive to
provision dedicated shuffling nodes. Under Starling and Lambada’s
method of shuffling a single 128 task to 128 task shuffle requires
256 S3 PUTS and 128*128*2 S3 GET request, costing $0.013. At this
price, we could instead run a dedicated VM shuffle data with 8GB
of memory for ten minutes at the spot price of $0.08 per hour (the
Feb 2023 price of a c5.xlarge instance). For most workloads adding
shuffling nodes will quickly reduce cost compared to the elastic
pool of S3. This we also use a set of provisioned VMs to reduce this
shuffling cost, and fall back on using S3 only when provisioned
VMs are at their capacity.

Shuffling instances act as an in-memory key-value store and are
implemented as a gRPC [19] server. Shuffle partitions destined for
the same partition are returned in a single request.

Shuffling instances are provisioned with AWS’s spot requests, re-
quiring nodes with 4vCPUs and at least 8GB of DRAM. Again, some
instance types with low network throughput are excluded. This
is especially important for shuffling as we require large network
bandwidth to exchange data with the compute layer.

When invoking each task in a query, we pass a list of the available
shuffling nodes. All tasks in the query are given the same list of
shuffling nodes. Each task attempts to write its partitioned output
first to a shuffling node. Shuffle nodes for a write are chosen using
a hash of the destination task of the partition. If a shuffle node is
full, the partition tries two more nodes before falling back on S3.

While there is a significant amount of work on shuffling in this
context [21, 22, 28]. , we instead chose a simple caching layer + S3
approach to avoid the complexity of these approaches as shuffling
did not appear to be a large driver of cost.

7.1.4 Query Plans and Execution. We generate C++ code for all
queries from the physical execution plan. This code is compiled and
uploaded to AWS Lambda where it can be invoked with necessary
parameters for execution, including a unique query identifier, stage
and task numbers and the current set of shuffle nodes. The code
for each query is also stored on S3 where it is fetched by VMs
in the execution layer for execution. The physical plan for these
queries were borrowed as closely as possible from the planner of
Redshift [20], except that all joins are either broadcast joins or
partitioned hash joins. The number of tasks in each stage is hand
tuned for performance and to ensure that memory requirements
for each task do not exceed limits of a Lambda function invocation
or VM. Stages are scheduled as soon as their dependencies are
resolved. We disable pipelining between stages.

7.1.5 The Coordinator. The coordinator is responsible for receiving
requests to run queries, scheduling tasks on the compute layer, and
allocating and keeping track of provisioned resources. It runs on
a single on-demand c5a.xlarge instance at a cost of $0.154 per
hour. For our experiments the coordinator receives a schedule of
queries to execute as a list of queries from the TPC-H benchmark
and starts them at a predetermined time.

The coordinator keeps a workload history at the granularity
of one second. This history includes the number of concurrent
scheduled tasks, and the volume of data shuffled. Resources are

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

0 10 20 30 40 50 60
Time(m)

0

200

400

600

800

1000

Co
nc

ur
re

nt
 Ta

sk
s/

VM
s

Running Tasks
VM Target
Active VMs
Model Predicted Active VMs

Figure 12: The demand for compute, the target number of
VMs, the number of running VMs, and the number of Avail-
able VMs our analytical model predicted over the duration
of an hour long workload of 750 queries.

allocated using the dynamic strategy described in Section 4. For
the evaluation the allocation strategy assumes that the startup time
of virtual machines is three minutes as this is the time we have
experimentally observed. And the cost premium of AWS Lambda
over spot instances is 6x. That is, a minute of compute on a lambda
function costs six times as much as the equivalent spot instance.

7.1.6 Query Workloads. We use a set of hour-long workloads gen-
erated with our workload generator, also used by our analytical
model. We use a mixture of TPC-H and TPC-DS queries over scale
factor 10, 50, and 100 datasets. We include all queries from TPC-H
and three from TPC-DS to achieve a broader set of queries than
TPC-DS alone. In particular we add TPC-DS queries 24, 58, and
81 because they are an iterative query, a reporting query, and a
query with multiple fact tables. Our generator creates a workload of
queries with a 30% baseline load and a period of 20 minutes for the
remaining queries in a sinusoidal distribution. Thus, each workload
will have peak in the density of queries at 10, 30 and 50 minutes.
Each query is randomly selected uniformly from the set and scale
factors. We compare workloads with varying numbers of queries,
from 60 to 2,000 queries in hour-long duration.

7.1.7 Databricks SQL. We compare Cackle with a Databricks SQL
Serverless Warehouse [16] with several configurations in AWS. We
first load all data into Databricks. Before executing each workload,
we first execute all queries in the workload three times. This allows
the data warehouse to populate its local disk caches and warm
up. Note that this makes for a somewhat unfair comparison with
Cackle. We execute queries from a virtual machine on EC2 and we
measure time of queries from the time each query is submitted until
results are returned this includes. We report cost by measuring the
time virtual machines are running. Assuming that Databricks SQL
instances run on the same hardware as their provisioned instances,
the instance types are i3.2xlarge, i3.4xlarge, and i3.8xlarge.
i3.4xlarge and i3.8xlarge are used for driver instances and use
on-demand. The i3.2xlarge are used as worker instances.

We compare with four configurations of Databricks SQL. First,
we consider fixed size warehouse of five small clusters, each with
one i3.4xlarge driver and four i3.2xlarge. We also compare
with a fixed size medium warehouse with three clusters, each with
one i3.8xlarge driver and eight i3.2xlarge worker nodes. We
also consider autoscaling small and mediumwarehouses that begin

60 250 500 750 1000 1500 2000
Queries

0.000

0.005

0.010

0.015

0.020

0.025

Co
st

 P
er

 Q
ue

ry
($

)

Modeled
Real
Oracle

Elastic Pool
VM

Figure 13: Cost comparison between our analytical model, a
real execution, and our model with an oracle strategy on a
set of workloads. The lower portion(circles) shows the cost
of VMs while the upper (crosses) shows the elastic pool cost.

with one cluster can scale to eight and five clusters respectively.
We report the cost of Databrickss as $0.70 per DBU(Databrick’s
charging metric) per hour. Each Small cluster is 12 DBU and each
medium cluster is 24 DBU.

7.1.8 Redshift Serverless. Wealso compare against a Redshift Server-
less instance set up with a base capacity of 8 RPUs(Redshift’s inter-
nal sizing metric). Each RPU costs $0.36 per hour. Thus the cost of
Redshift Serverless is $2.88 per hour. Users are charged only when
queries are running on the cluster with a minimum charge of 60
seconds. Redshift Serverless instances allow users to increase the
capacity they use when usage is high and will allocate additional
hardware (at an additional charge). Again, we first load all data
and before executing each workload, we execute all queries in the
workload three times to allow caches to populate.

We believe that the techniques and behaviorswe see inDatabricks
SQL and Redshift Auto-scaling are representative of the techniques
employed by other datawarehouse products. Specifically, Snowflake
Auto-Scaling Multi Cluster warehouses [29] wait until work has
queued before allocating new hardware to a user’s workload.

7.2 Analytical Model Validation
We first validate that our analytical model matches the behavior
of Cackle during a real execution. Figure 12 shows the compute
resource demand execution of an hour long workload of 750 queries.
We see that the demand rises and falls with a twenty-minute period.
Cackle adjusts the target number of virtual machines, seen in blue.
The number of virtual machines that are active (either running tasks
or available to run tasks) is shown in orange. We took the executed
history from the workload and fed it back into our analytical model
to validate our cost prediction was accurate. We show the results as
“Model Predicted Active VMs” in Figure 12 as well. Our analytical
model predicts that for this workload the cost of the compute layer
should be $8.41. The actual costs measured by the system for the
execution of this workload were $7.41, a difference of 12% compared
to the prediction of the analytical model. The predicted cost of the
elastic pool and virtual machines were $2.63 and $5.07, respectively,
while the actual costs measured were $3.22 and $4.19.

In Figure 13 we show the predicted and actual compute costs
for a set of workloads of with varying numbers of queries. We also
compare the costs of an oracle strategy on our analytical model for

Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools Conference’17, July 2017, Washington, DC, USA

0 250 500 750 1000 1250 1500 1750 2000
Queries

10

20

30

40

50

60

90
th

Pe
rc
en

til
e
of

La
te
nc
y
(s
)

0 250 500 750 1000 1250 1500 1750 2000
Queries

0.0

0.1

0.2

W
or
kl
oa

d
Co

st
Pe
rQ

ue
ry

()

Redshift Serverless Base 8 RPU
Databricks Small Auto Serverless
Databricks Small 5 Clusters
Databricks Medium Auto Serverless
Databricks Medium 5 Clusters
Cackle

Figure 14: Comparison of Cackle query latency and cost with Databricks SQL small and medium warehouse fixed provisioning
and with auto-scaling enabled, and Redshift Serverless.

comparison to the best-case provisioning. The oracle strategy has
complete workload knowledge. We see that the cost our analytical
model predicts is close to the real cost of executing the workload in
all cases. Furthermore, we also see that the model also accurately
predicts the cost ratio between the elastic pool and provisioned VMs.
Finally, we see that for workloads with a small number of queries,
the majority of the cost comes from the use of the elastic pool, even
using the oracle strategy. For busier workloads this percentage
decreases significantly. We find that for this set of workloads our
system is a maximum of 36% more expensive than a strategy with
full workload knowledge. Most of this cost reduction comes from
the ability of an oracle strategy to know the arrival time of demand
spikes and provision VMs to meet them. The average increase in
cost compared to the oracle strategy is 26%. Despite this higher cost
per query, we show below how the system has lower overall cost
than alternatives for low query workloads, and maintains cost and
performance stability across a range of workloads.

7.3 Cost and Latency Stability
In Figure 14 we compare the cost per query and the 90th percentile
of query latency against four configurations of a Databricks SQL
Pro Warehouse and Redshift Serverless. We use the 90th percentile
of queries to capture the user experience of the system, specifically
including when the system is under heavy load. We compare a
fixed provisioning and an auto-scaling strategy on the small and
medium Databricks SQL warehouses. On the left we show how
the latency of queries changes as the number of queries increases.
We find that the Databricks auto-scaling strategies have relatively
low latency when the number of queries is low, but as we increase
the number of queries the 90th percentile latency of queries can
increase by more than 2x for Small Autoscaling Clusters. This is
expected as queries queue while additional clusters are allocated.
Similarly Redshift Serverless tail latency also worsens by more
than 6x. The fixed provisioning also sees a reduced performance as
the number of queries increase, but to a lesser extent. Cackle has
consistent query latency across all workloads tested.

On the right side of Figure 14, we compare the per query cost of
each configuration. We include both compute and shuffling costs
for Cackle. We see that across a wide range of workloads, Cackle
maintains a relatively stable cost per query. However for all other
configurations, with the exception of Redshift, we see costs rise

sharply as the number of queries in the workload decreases. This
is because for these workloads we are paying for underutilized
resources that remain mostly idle.Redshift does not charge a user
for the time when queries are not executing, however, it appears
that these nodes are still running in the background and thus will
continue to incur a cost to the cloud provider. We note that the
workload cost is lower for the Auto-scaling configurations for work-
loads between 200 and 800, but this comes with increased query
latency. We see that the cost per query increases for these auto-
scaling systems, because they do not rapidly respond to variations
in query load, as Cackle does.

Cackle does not achieve as low of a cost as Databricks for larger
workloads, or as low as Redshift across the spectrum. There are
a few reasons for this. First, Cackle is a research prototype and
performance and cost could both be improved with additional en-
gineering effort. Cackle, unlike Databricks and Redshift does not
use local fast disks to store base tables, and must exchange data
through an additional shuffling layer. This is due to the constraints
of the elastic pool used, AWS Lambda, and contributes both to cost
and query latency. We believe that in a full integration of an elastic
pool with a modern data warehouse could drive down cost and
maintain high performance across the full range of workloads.

8 RELATEDWORK
There is prior work on using elastic pools for query execution. Both
Starling [27] and Lambada [24] proposed using Cloud Functions for
query execution, but are only cost effective when query volumes
are low. This approach is viable for a narrow slice of workloads.
Instead, Cackle focuses on augmenting provisioned resources with
elastic pools to gain elasticity without sacrificing the low cost of
provisioned systems. In addition, our work proposes strategies
for changing workloads and environment while both Starling and
Lambada rely exclusively on elastic pools.

There is a wide body of work in adjusting the compute to chang-
ing demand in implemented in cloud systems. Redshift Concurrency
Scaling [8] is one example of these strategies. Concurrency Scal-
ing assigns new clusters to a database to handle spikes in load.
However, this only occurs once queries have been queued on a
user’s main cluster. Databricks SQL has a similar technique for
auto-scaling clusters, adding a cluster or more at a time only af-
ter queries are queued [1]. In addition to being slow to respond

Conference’17, July 2017, Washington, DC, USA Matthew Perron, Raul Castro Fernandez, David DeWitt, Michael Cafarella, and Samuel Madden

to demand changes, these techniques also release added clusters
slowly. Snowflake uses similar strategies [23, 29].

P-store [31] is an OLTP database that elastically scales compute
resources to predicted changes in demand. However, it does not
make use of elastic pools and instead relies on detecting workload
changes and provisioning resources before demand spikes.

9 CONCLUSION
In this work we demonstrated that by augmenting a system with
elastic pools of resources and choosing a resource provisioning
strategy that accounts for cost and properties, we can avoid the
common provisioning challenges common in data warehousing
systems. We developed a novel meta-strategy that adapts to dif-
ferent workload and environmental conditions. We showed in an
analytical model that this strategy is robust to varying workloads
and execution environments. We validated the results of this model
in an implementation and showed that our model predicted within
5% of the actual cost of the workload. Cackle achieves 90th per-
centile query latency an order of magnitude lower than a Databricks
SQL medium warehouse with auto-scaling enabled with similar
cost per query. Furthermore, it achieves lower variance in latency
and performance than all compared configurations for a range of
workloads.

REFERENCES
[1] 2023. Queueing and autoscaling. Databricks SQL Documentation. Posted

at https://docs.databricks.com/sql/admin/create-sql-warehouse.html#queueing-
and-autoscaling..

[2] Josep Aguilar-Saborit, Raghu Ramakrishnan, Krish Srinivasan, Kevin Bocksrocker,
Ioannis Alagiannis, Mahadevan Sankara, Moe Shafiei, Jose Blakeley, Girish
Dasarathy, Sumeet Dash, Lazar Davidovic, Maja Damjanic, Slobodan Djunic,
Nemanja Djurkic, Charles Feddersen, Cesar Galindo-Legaria, Alan Halverson,
Milana Kovacevic, Nikola Kicovic, Goran Lukic, Djordje Maksimovic, Ana Manic,
Nikola Markovic, Bosko Mihic, Ugljesa Milic, Marko Milojevic, Tapas Nayak,
Milan Potocnik, Milos Radic, Bozidar Radivojevic, Srikumar Rangarajan, Milan
Ruzic, Milan Simic, Marko Sosic, Igor Stanko, Maja Stikic, Sasa Stanojkov, Vukasin
Stefanovic, Milos Sukovic, Aleksandar Tomic, Dragan Tomic, Steve Toscano,
Djordje Trifunovic, Veljko Vasic, Tomer Verona, Aleksandar Vujic, Nikola Vu-
jic, Marko Vukovic, and Marko Zivanovic. 2020. POLARIS: The Distributed
SQL Engine in Azure Synapse. Proc. VLDB Endow. 13, 12 (aug 2020), 3204–3216.
https://doi.org/10.14778/3415478.3415545

[3] Alibaba Cluster Trace Program - Cluster Trace v2018 2018. Alibaba Cluster Trace
Program - Cluster Trace v2018. Github. Posted at https://github.com/alibaba/
clusterdata/blob/master/cluster-trace-v2018/trace_2018.md..

[4] Amazon EC2 Spot Instances Pricing [n. d.]. Amazon EC2 Spot Instances Pricing.
https://aws.amazon.com/ec2/spot/pricing/.

[5] Amazon Redshift Serverless [n. d.]. Amazon Redshift Serverless.
https://aws.amazon.com/blogs/aws/introducing-amazon-redshift-serverless-
run-analytics-at-any-scale-without-having-to-manage-infrastructure/.

[6] Amazon S3 [n. d.]. Amazon S3. https://aws.amazon.com/s3/.
[7] Amazon Web Services [n. d.]. Amazon Web Services. https://aws.amazon.com/.
[8] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh

Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205–2217.

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of computing 8, 1
(2012), 121–164.

[10] AWS Lambda [n. d.]. AWS Lambda. https://aws.amazon.com/lambda/.
[11] Azure Blob Storage [n. d.]. Azure Blob Storage. https://azure.microsoft.com/en-

us/products/storage/blobs/.
[12] Azure Synapse Analytics [n. d.]. Azure Synapse Analytics.

https://azure.microsoft.com/en-us/products/synapse-analytics/.
[13] Mengchu Cai, Martin Grund, Anurag Gupta, Fabian Nagel, Ippokratis Pandis,

Yannis Papakonstantinou, and Michalis Petropoulos. 2018. Integrated Querying
of SQL database data and S3 data in Amazon Redshift. IEEE Data Eng. Bull. 41, 2
(2018), 82–90. http://sites.computer.org/debull/A18june/p82.pdf

[14] Transaction Processing Performance Council. 2008. TPC-H benchmark specifica-
tion. Published at http://www. tcp. org/hspec. html 21 (2008), 592–603.

[15] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[16] Databricks SQL [n. d.]. Databricks SQL.
https://www.databricks.com/product/databricks-sql.

[17] Google Cloud Functions [n. d.]. Google Cloud Functions.
https://cloud.google.com/functions.

[18] Google Cloud Storage [n. d.]. Google Cloud Storage.
https://cloud.google.com/storage.

[19] gRPC [n. d.]. gRPC. https://grpc.io/.
[20] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-

fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM,
1917–1923. https://doi.org/10.1145/2723372.2742795

[21] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
2022. Jiffy: Elastic Far-Memory for Stateful Serverless Analytics. In Proceedings
of the Seventeenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). Association for ComputingMachinery, NewYork, NY, USA, 697–713.
https://doi.org/10.1145/3492321.3527539

[22] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. 2018. Pocket: Elastic ephemeral storage for serverless analyt-
ics. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 427–444.

[23] Themis Melissaris, Kunal Nabar, Rares Radut, Samir Rehmtulla, Arthur Shi,
Samartha Chandrashekar, and Ioannis Papapanagiotou. 2022. Elastic Cloud Ser-
vices: Scaling Snowflake’s Control Plane. In Proceedings of the 13th Symposium on
Cloud Computing (San Francisco, California) (SoCC ’22). Association for Comput-
ing Machinery, New York, NY, USA, 142–157. https://doi.org/10.1145/3542929.
3563483

[24] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 115–
130.

[25] ORC Specification [n. d.]. ORC Specification.
https://orc.apache.org/specification/.

[26] Ippokratis Pandis. 2021. The evolution of Amazon redshift. Proceedings of the
VLDB Endowment 14, 12 (2021), 3162–3174.

[27] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 131–141.

[28] Marc Sánchez-Artigas, Germán T. Eizaguirre, Gil Vernik, Lachlan Stuart, and
Pedro García-López. 2020. Primula: A Practical Shuffle/Sort Operator for Server-
less Computing. In Proceedings of the 21st International Middleware Conference
Industrial Track (Delft, Netherlands) (Middleware ’20). Association for Computing
Machinery, New York, NY, USA, 31–37. https://doi.org/10.1145/3429357.3430522

[29] Snowflake Documentation: Multi-cluster Warehouses 2023. Multi-cluster Ware-
houses. Snowflake Documentation. Posted at https://docs.snowflake.com/en/
user-guide/warehouses-multicluster#label-mcw-scaling-policies..

[30] Tableau [n. d.]. Tableau. https://www.tableau.com/.
[31] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,

Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-Store:
An Elastic Database System with Predictive Provisioning. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIG-
MOD ’18). Association for Computing Machinery, New York, NY, USA, 205–219.
https://doi.org/10.1145/3183713.3190650

[32] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

https://docs.databricks.com/sql/admin/create-sql-warehouse.html##queueing-and-autoscaling
https://docs.databricks.com/sql/admin/create-sql-warehouse.html##queueing-and-autoscaling
https://doi.org/10.14778/3415478.3415545
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
http://sites.computer.org/debull/A18june/p82.pdf
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3542929.3563483
https://doi.org/10.1145/3542929.3563483
https://doi.org/10.1145/3429357.3430522
https://docs.snowflake.com/en/user-guide/warehouses-multicluster##label-mcw-scaling-policies
https://docs.snowflake.com/en/user-guide/warehouses-multicluster##label-mcw-scaling-policies
https://doi.org/10.1145/3183713.3190650

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Workload Examples
	2.2 Elastic Pools

	3 Hybrid System Design and Assumptions
	3.1 Work Scheduling and Query Execution
	3.2 Cost Models and Environmental Conditions

	4 Approaches To Provisioning
	4.1 Cost Factors
	4.2 Fixed Strategies
	4.3 Workload-Adaptive Strategies
	4.4 Dynamic Cost-Based Strategy

	5 Strategy Robustness
	5.1 Model Implementation
	5.2 Compute Workload Changes
	5.3 Environment Changes
	5.4 Example Real Workloads
	5.5 The Cost of Delaying Work
	5.6 Shuffling

	6 Discussion
	7 Evaluation
	7.1 Experimental Setup
	7.2 Analytical Model Validation
	7.3 Cost and Latency Stability

	8 Related Work
	9 conclusion
	References

