
Seeping Semantics: Linking Datasets using Word
Embeddings for Data Discovery

Raul Castro Fernandez∗ Essam Mansour� Abdulhakim A. Qahtan� Ahmed Elmagarmid�

Ihab F. Ilyas‡ Samuel Madden∗ Mourad Ouzzani� Michael Stonebraker∗ Nan Tang�
∗MIT CSAIL �Qatar Computing Research Institute, HBKU ‡University of Waterloo

{raulcf, madden, stonebraker}@csail.mit.edu
{emansour, aqahtan, aelmagarmid, mouzzani, ntang}@hbku.edu.qa ilyas@waterloo.ca

Abstract—Employees that spend more time finding relevant
data than analyzing it suffer from a data discovery problem.
The large volume of data in enterprises, and sometimes the
lack of knowledge of the schemas aggravates this problem.
Similar to how we navigate the Web, we propose to identify
semantic links that assist analysts in their discovery tasks. These
links relate tables to each other, to facilitate navigating the
schemas. They also relate data to external data sources, such as
ontologies and dictionaries, to help explain the schema meaning.
We materialize the links in an enterprise knowledge graph, where
they become available to analysts. The main challenge is how to
find pairs of objects that are semantically related. We propose
SEMPROP, a DAG of different components that find links based
on syntactic and semantic similarities. SEMPROP is commanded
by a semantic matcher which leverages word embeddings to
find objects that are semantically related. We introduce coherent
group, a technique to combine word embeddings that works
better than other state of the art combination alternatives. We
implement SEMPROP as part of Aurum, a data discovery system
we are building, and conduct user studies, real deployments and
a quantitative evaluation to understand the benefits of links for
data discovery tasks, as well as the benefits of SEMPROP and
coherent groups to find those links.

I. INTRODUCTION

Many large organizations have a critical need for data
discovery systems; their employees spend more time finding
relevant data than analyzing it. For example, data scientists
at a major pharmaceutical company report that they spend
the majority of their time searching for relevant data over
more than 4, 000 relational databases, a large data lake, and a
myriad of files. There is no fully integrated schema or global
schema relating these data sets, and building such an integrated
database would take many years and millions of dollars.

As a result, navigating this collection of data is a huge
challenge, especially since many analysts are not used to
working with databases; some of them are not even computer
scientists. Hence, if an analyst wants to identify, for example,
which assays are involved in a drug study, she must either
have a good understanding of the structure and schema of
the different data sources or rely on other employees who
do. Moreover, this time-consuming exploration often misses
relevant data that remains unknown to the analysts.

Similar to how we find relevant content on the Web today,
our key insight is that we can help analysts understand and
navigate these datasets by linking related datasets. Finding links

between datasets is a well-understood task in many settings.
For example, schema matching and data integration tools find
same-as relationships: fields that are the same in a source and a
target schema [1]. On the other hand, knowledge construction
tools [2] establish knowledge bases that link concepts and
individuals via various types of semantic relationships that can
be very expressive (such as born-in, married-to, and subclass-
of) and allow reasoning on these relationships.

These existing techniques for mining and identifying relation-
ships between datasets are not appropriate for data discovery.
On the one hand, finding same-as relationships (e.g., in schema
matching) fails to link datasets that, while not the same, are
semantically related. For example, a dataset on drug standards
enriches one about clinical trials because it offers more detail
on different drugs involved in these trials. So although we
are not interested in mapping them directly, having them side
by side proved to be useful in practice. On the other hand,
creating an expressive and well-crafted knowledge base with a
rich ontology is an overkill for data discovery, and is a hugely
expensive and labor-intensive manual task when data is highly
heterogeneous, even with the benefit of semi-automated tools.

Instead, we propose a fully automatic system that is able
to surface related datasets to the analyst, who can then easily
identify their semantic relationships and employ them in their
analytics tasks. We draw on the Web as an analogy: surfacing
related documents through a search engine is highly valuable
even though Web search engines cannot reason about exact
semantic relationships, e.g., that page A explains page B, or
the content of page C contradicts the content of page D.

We show in this paper that a general Web-style knowledge
graph is not only useful for data discovery, but is the right
compromise between coverage and expressiveness of the
discovered links among various datasets and efficiency of its
creation. However, as we will show, simple web-style search
for data items that have high syntactic similarity is insufficient,
as it generates many items that are not truly related. Thus, a
more sophisticated approach to discover deeper relationships
between data items is needed.

A. Approach Overview

We illustrate our approach with Fig. 1, which shows two
tables (Target Dictionary and Drug Indication) of the Drug-

SINGLE3727

protein_typeid

polymerase 4

name

DrugCentral

Chembl_22

Target dictionary

Ontology

record_id

cd_id name 32

molregnodrug_id

Drug Indication

Drug

Target

interacts_with

Fig. 1: Example of discovered links in databases

Central [3] and ChEMBL [4] databases, respectively. In this
example, our approach first identifies links between the table
names and classes of an existing ontology (shown in the
center of the figure). By transitively following these links, we
establish another link between the tables. These links can then
be materialized for consumption and used in data discovery.
We materialize the links in an enterprise knowledge graph
(EKG); a graph structure whose nodes are data elements such
as tables, attributes and reference data such as ontologies
and mapping tables and whose edges represent different
relationships between node elements. The EKG is part of a
larger data discovery project and helps analysts understand how
different tables are connected (even from different databases).

B. Technical Challenges and Contributions

When building the links, we need to effectively assess if
two objects are related. The criteria to identify related objects
needs to go beyond simple syntactic similarity methods (edit or
Jaccard similarity of strings), or otherwise many links would
correspond to false positives, such as “beautiful bride” and
“bountiful bribe”, which although are similar according to edit
distance, are not semantically related.

Our key idea is to rely on a new semantic similarity metric
based on word embeddings [5]. Word embeddings capture
semantic similarity and dissimilarity of words based on the
distributional hypothesis [6], which states that words that appear
together in some corpus of documents usually share similar
meaning or are closely related. For example, “Fahrenheit” and
“Celsius” are semantically similar, although not syntactically
similar. This new semantic similarity metric helps us identify
that “beautiful bride” and “bountiful bribe” are not semantically
similar, and therefore should not be used to relate datasets.

As a result of the new metric, the links are of higher quality
than those generated using only traditional syntactic similarity
measures that introduce many false positives. In addition, the
new semantic similarity measure finds new links that would
be missed otherwise, such as a link between attributes isoform
- protein of the chemical databases of the example. Word
embeddings address our challenge of finding semantically

similar items in a fully automated fashion without needing to
determine the exact nature of the semantic relationships.

Despite the benefits of word embeddings, their direct use to
solve our task is hindered by two well-known problems: i) multi-
word phrases, e.g., “drug interaction”; and ii) out-of-vocabulary
terms for which there is not a word embedding. We introduce
the concept of coherent groups to tackle both problems by
combining word embeddings from multi-word phrases; the key
idea is that a group of words is similar to another group of
words if the average similarity (in the embedding) between all
pairs of words is high. This is a novel approach that performs
better than existing techniques for multi-word phrases and
out-of-vocabulary terms in the embedding literature.

Semantic Propagation System. Our approach to address the
above challenges is in the form of a semantic propagation
mechanism, called SEMPROP. Semantic propagation consists
of identifying high quality links between datasets that help
analysts understand the data, i.e., which datasets are connected,
ultimately facilitating data discovery. Using a DAG, SEMPROP
combines semantically-filtered syntactic links, new semantic
links identified by our semantic matcher based on word
embeddings, and the output of a structural summarizer—which
exploits the structure of reference data such as ontologies to
further curate links. In summary, our contributions are:
• We define the semantic propagation problem, and show

how to generate links to help users with data discovery tasks
(Section II-B).
• We introduce a semantic matcher based on what we call

coherent groups, which allow us to use word embeddings to
find links. (Section III).
• We introduce SEMPROP, an end-to-end system that

orchestrates a series of traditional syntactic matchers along
with our new semantic matcher and structural summarizer.
SEMPROP achieves high quality links without requiring human
intervention (section IV).

Evaluation. We evaluate SEMPROP using datasets from three
different domains (Section V). We conduct a user study to
demonstrate the value of finding links between semantically
related objects, report on our experience on a real deployment,
and quantitatively evaluate the benefits of SEMPROP, including
coherent groups for generating links with ground truth retrieved
from real datasets. As an example, we demonstrate how
our mechanism finds high quality links that help discover
data across three drug databases, a private one from our
collaborators, and two public databases.

II. OVERVIEW

A. Notation

Source Elements. The source elements of a database are the
union of the names of all relations and attributes, denoted
by SE = N ∪A, where N refers to all relations and A all
attributes. Take Fig. 1 for example, the source elements of
the database DrugCentral are {Target dictionary, id, name,
protein type}.

Databases

Reference
Data

Semantic
Matcher

Structural
Summarizer

SemProp Orchestrator DAG

F E

A D
B

I

G

M
H

J

LK N

EKG

Fig. 2: SemProp overview

Relations may come from different data repositories. They
may have been created by different people under different
assumptions and using different naming conventions. When
finding links for discovery, we will consider both the relation
names as well as the attribute names, i.e., the source elements.
This is necessary to cover databases that represent their entities
at different granularity levels.

Ontologies. An ontology contains a set of classes and re-
lationships between classes. A class represents the concept
related to a set of entities, e.g., Protein. A relationship is
a binary predicate that represents a connection between two
classes in an ontology, e.g., Drug interacts with Target. Many
ontologies also contain a hierarchical organization of their
classes, e.g., Protein is a subclass of Chemical Compound
in the Experimental Factor Ontology (EFO) [7]. Each class
typically has a name, and possibly other associated metadata,
but ontologies do not generally contain actual data instances.

Reference Data. This is data that is considered gold standard in
a domain. We consider two types: 1) ontologies and 2) mapping
tables that indicate that two attributes are equivalent, and how
their values map onto each other.

Semantic Links. We start by creating links between reference
data and source elements; specifically, we create a link between
a source element e in SE and a class c in C if their relevance,
measured by an evidence function f(e, c), is greater than a
predefined threshold θ. For example, we may determine that
a link exists if the similarity between a class name and an
attribute name is greater than a threshold. We will introduce
different matchers whose job is to identify links.

Transitive Link Propagation. Once we obtain the links, we
check which links can transitively complete the graph, and
create additional links between two source elements ei, ej . For
example, if (i) both source elements have links to the same
ontology class, and (ii) they have links to different classes in
the ontology, and these are related, e.g., they are parent-child,
or one class has a relationship with respect to the other that is
specified in the ontology. We discuss in detail in section IV-C.

B. Problem and Solution Overview

Problem. Given a set of source elements, and a set of reference
data, the problem of semantic propagation is to identify links
between source elements and reference data and use these
to transitively find additional links between source elements,
drawing relationships from reference data.

Solution Overview. An overview of our approach, SEMPROP,

is shown in Fig. 2. SEMPROP uses a set of matchers, including
our new semantic matcher based on word embeddings, as well
as several other syntactic matchers, augmented with negative
signals from our semantic matcher (Section III). These matchers
are orchestrated by a DAG that produces a set of links after
using a structural summarizer (section IV). In this paper, we are
concerned with generating the links. Later, for evaluating our
approach, we materialize the links in an enterprise knowledge
graph (EKG), which is a data structure that maintains all the
links and makes them accessible to users.

Scope of our solution. In this paper, we focus on generating
links for data discovery. When working with large repositories
of datasets, our aim is to offer links that allow users to quickly
narrow down their discovery needs to a handful of datasets.
There is nothing fundamental that prevents our solution from
finding links between individual values as well. Doing so,
however, risks polluting results with too many links, and could
limit performance when working with billions of values.

III. SEMPROP MATCHERS

In this section, we first introduce word embedding techniques
that map a single word to a vector representation (Section III-A).
We then present coherent groups to combine embeddings
together for multiple words when they are semantically close
to each other (Section III-B). We then discuss the semantic
matcher, SEMA in (section III-C). We finish the section with
a brief discussion of some syntactic matchers we use in our
evaluation (section III-D).

A. Word Embeddings

The distributional hypothesis states that words appearing
in the same context share meaning [6]. Recent advances in
language models based on distributed representations capture
the intuition of the distributional hypothesis and have been
used in different tasks such as topic detection, document
classification, and named entity recognition. Word embeddings
based on neural probabilistic language models [8] such as
Word2Vec [9] or Glove [10] have achieved high accuracy in
capturing different similarity metrics of words. For example,
in one such model trained on 6 billion words from Wikipedia,
the words “salary” and “wage” have a similarity of 0.68,
the words “kilometer” and “mile” of 0.85, and the words

“isoform” and “protein” (from our example) have a similarity
of 0.88. Crucially, in the same way word embeddings capture
words that are semantically similar, they capture dissimilarity
as well, which is equally important for our task—we can use
dissimilar words to identify false positives, as will be explained
later. Once trained, a word embedding model takes as input
a term t and outputs a vector xt that represents t in some
d-dimensional vector space, where d is a parameter of the
trained model.

Unfortunately, we cannot directly use word embeddings
for our problem for two reasons. First, word embeddings are
learned for single words, but many source elements contain
multiple words, and we want to measure their similarity with
other multi-word elements, e.g., compare ”Drug Description”

with ”Building Description”. Second, oftentimes, words are
not in the dictionary of the embeddings we have (such words
are referred to as unknowns i.e., unk). To tackle these two
problems, we introduce the concept of coherent group, which
is a technique to combine word embeddings and deal with unk
words. Before explaining coherent groups in detail, we discuss
existing methods in the literature.

Combining Word Embeddings. Perhaps the most direct
approach for combining word embeddings is presented in
[11], which introduces a method to produce a vector from
sentences and paragraphs. Although we could use this method
in principle, its performance is not good enough when we
have only attribute names, which consist of a few words
and are typically not grammatically complete sentences. We
demonstrate this in the evaluation section. Simpler approaches
used in practice are to combine words using pairwise mean,
min or max [12]. Of those, averaging word embeddings (AWE)
is quite popular [13], [14], [15]. We found these approaches
did not yield good results in our case. We also show this in the
evaluation section (V-C). Other more principled approaches
exist to combine word embeddings. For example, in [16],
the authors fit a probabilistic model over the corpus of word
embeddings and then apply the Fisher kernel framework [17]
to combine multiple word embeddings into a single fixed-
dimensional one. This would, however, require knowledge
about a good probability distribution for the word embeddings
and is computationally expensive. In contrast to these methods,
we propose coherent groups, which is a practical and simple
way of combining word embeddings that works well in practice
for our problem of semantic propagation.

B. Coherent Groups based on Word Embeddings

The idea behind coherent groups is that, instead of combining
the word vectors directly—which is challenging as discussed
above—, we reason about the similarity of two groups of words,
such as two attributes, through their pairwise similarities, i.e.,
the distances of their word representations in the embedding.

Setting. We have a set of elements, SE, where each ei ∈ SE
contains one or more words, such as an attribute or class name.
For example, an element ei with two words, “Drug Description”
will be represented by two vectors x1, x2 ∈WE, where WE
is the word embeddings available to us. We refer to the set of
vectors that represent an element ei as V (ei). Given two such
elements e1 and e2, we want to determine whether they are
semantically similar or dissimilar, according to the distance
between the words’ vector representations, i.e., the union of
V (e1) and V (e2).

The coherency factor of a set of vectors, X , is the average
of the all-pairs similarities between its elements:

F (X) =

∑
xi,xj∈X sim(xi, xj)

|X|
where sim(x, y) is the cosine similarity, which is a good
similarity measure for comparing two vector embeddings. A
coherent group is a set of words with a coherency factor greater

than a threshold, δ. Adding a new vector to a coherent group
will either keep the group coherent, i.e., if F > δ, or render it
incoherent, i.e., F < δ′. Intuitively, a coherent group contains
words that fall in the same semantic space—they share some
meaning. We explain next how we use them as part of the
semantic matcher, and how we solve the second challenge of
using word embeddings, dealing with unknown words.

C. Semantic Matcher using Coherent Groups
Our semantic matcher, SEMA, uses coherent groups to

generate positive and negative signals. We refer to it as
SEMA(+) when it produces positive signals, i.e., pairs of
elements that form a coherent group, and SEMA(-) when it
produces negative signals, i.e., the coherency factor of the
elements’ vectors is below δ′. To make this concrete, we define
a function CG that takes a group of vectors and by computing
their coherency factor determines whether they comprise a
positive or negative signal:

CG(X) =

{
1 if F(X) > δ

−1 if F(X) ≤ δ′

where 1 indicates a positive signal and −1 a negative one. In
the simplest case, δ = δ′. We explain how we use these groups
to find links followed by a discussion of two special cases.
Finding Positive and Negative Signals. We first pre-process
the source elements and classes by tokenizing the names and
filtering stop words. We remove symbols such as ‘-’ or ‘ ’,
also optionally employ a CamelCase tokenizer that transforms
words of the form SocialSecurity into social security. It is
easy to add new tokenizers if necessary. The output of the
pre-processing stage is a bag of words for each source element
and for each class. Bag-of-words is a good abstraction for this
application because source elements consist of a few words
and not of grammatically complete sentences, for which the
word order—which is lost with the BOW model—may matter.

We check which pairs of bag of words, i.e., attributes and
classes, have a coherency factor above δ; these are the positive
signals. We also check which ones have a coherency factor
below δ′; these are the negative signals, which we will use to
filter out false links produced by other matchers, as we will
see in the next section. For example, a syntactic matcher may
find a link between Cell type and Bell type, as they only differ
in one letter. However, SEMA(-) indicates a negative signal,
thus it can be filtered out. Before giving more details about
how we use these in practice, we discuss special cases that
occur while computing coherent groups.
Special Cases. We consider two special cases: (1) some
words from our source elements or classes will not be in
the vocabulary since word embeddings are pre-trained from a
closed word set, and (2) some words are identical, which can
cause them to be over-weighted.

Unknown words 〈unk〉. The first case occurs when a word
does not exist in the embedding model we have. This can
happen for two reasons. First, the word may be a domain
specific word that is not commonly used, such as namalwa,

TABLE I: Example formats and errors

Chembl EFO CLO
P3HR-1 P3HR1 P3HR-1 cell
UMUC3 UM-UC-3 UM-UC-3 cell
G-401 G401 G-401 cell

SNU-16 SNU16 SNU-16 cell
NAMALVA NAMALWA NAMALWA cell

Lyphoma Lymphoma lymphoma

which corresponds to a drug. Second, data may be dirty: typos
in words would not likely appear in our vocabulary—unless
they are so common that they are learned. For example, the
name namalwa is not in the word embedding dictionary we
learn and, in addition, in the ChEMBL database it is misspelled
as namalva (see Table I). The word Lymphoma is in our
vocabulary, but is also misspelled in the ChEMBL database,
which prevents us from obtaining an embedding for it. When
we cannot find a word in our dictionary for either of the
previous cases, we say we have an 〈unk〉.

We can treat unks in two different ways. First, we can
simply ignore them—not taking them into account while com-
puting the coherency factor. Alternatively, we could penalize
the similarity metric when we find an unk, for example, by
saying that sim(x, y) in that case is 0, or some negative value.
The intuition for the first case is that if the data is dirty we
should not penalize the existence of unk, but we should do it
if the word is too specific and cannot be compared with other
words. In practice, making this decision depends on the quality
of the learned dictionary as well as the perceived quality of
the existing links. For our evaluation, we choose to penalize
unks with a similarity of 0 because data is generally clean.

Discussion on model specificity. There is a tension between
training a word embedding model on either a domain-specific
corpus or a general purpose one. The former may lead to
fewer unks, while the latter may lead to a better model of
the language, therefore capturing the semantic relationship of
words in a more precise fashion. We evaluate experimentally
the practical differences of using models trained on different
corpora in the evaluation section (V-C)

Treating identical words. The second special case occurs when
we are comparing words that are exactly the same, i.e., their
similarity is 1. In this case, we have the choice to count these
cases, which will contribute positively to the similarity value,
or ignore them, which will put more weight on the other words
in the group (our choice in the evaluation). One argument
for the first option would be that we can use the semantic
matcher to subsume a simple syntactic matcher that computes
exact similarity of words. However, there are two reasons
why trying to subsume syntactic matchers is a bad idea. First,
syntactic matchers are more sophisticated as they can find
approximate matches, e.g., with an edit distance below some
threshold. Second, if two words are exactly the same, but they
are an unk, then SEMA will not find them, but a syntactic
matcher will. For these two reasons, the semantic matcher
cannot subsume a syntactic matcher (experiment in section V).

D. Syntactic Matchers

The semantic matcher we just presented focuses on finding
links between source elements and ontologies. We use two
additional matchers that are implementations of state-of-the-
art instance-based and schema-based matchers [18]. We use
these matchers to complement the semantic matcher, as well
as to identify links to lookup tables, that are abundant in some
databases of large organizations.

Instance-based Matcher. We use an instance-based matcher
that computes the Jaccard similarity between two sets of data
values. This matcher is useful when there are data instances
available, e.g., we are finding links against a lookup table or a
knowledge base (which contains data).

Syntactic Similarity of Names. There exist cases in which
name similarity is high but our semantic matcher does not
yield results because the words are not in the vocabulary the
embedding was trained on. We use a syntactic matcher that
finds the similarity of the attribute and table name, we call it
SYNM. Despite its simplicity, it is very efficient in cases in
which the vocabularies in a domain are well aligned. We use
a state-of-the-art matcher in this case as well.

IV. SEMANTIC PROPAGATION

In this section, we first study how to combine the various
matchers to compute links (Section IV-A). We then introduce
a structural summarizer that curates links by using the struc-
ture available in ontologies (Section IV-B). We conclude by
describing how to use the existing links to find additional ones
by transitively following them in the ontologies (Section IV-C).

A. Orchestrating Matchers

The order of different matchers and matching operators
changes the resulting links. For that reason, we need to decide
what is a reasonable combination. We propose to use a directed
acyclic graph (DAG) to combine these matchers, with the target
of producing links with the best recall and precision.

Matchers and Matching Operators. To assemble such a
DAG, we have different matchers—that produce semantic
and syntactic links—and matching operators. A matcher takes
source elements and ontologies as input and produces links.
A matching operator takes links as input and outputs links.
Matchers and matching operators are then orchestrated by a
semantic propagation graph.

Semantic Propagation Graph. The semantic propagation
graph is a DAG Gs(Vs, Es). Each node u in Vs can be a
matcher or a matching operator. Each directed edge (u, v)
represents the order in which the links flow between nodes in
the graph. It is possible to combine matchers and matching
operators into different DAGs. We allow users to configure
DAGs, but we provide here a particular configuration, SEM-
PROP—which works well in practice—and explain its rationale.

SEMPROP graph. We use three different matchers (single
stroke oval in Fig. 3) and three different matching operators
(double stroke oval). Our matchers consist of: (i) the SYNM

Fig. 3: Semantic Propagation DAG, SEMPROP

matcher which produces links based on the syntactic similarity
of names of the source elements; and (ii) the SEMA matcher,
which uses coherent groups to find positive links, SEMA(+),
as well as negative ones, SEMA(-). The matching operators
are the union and set-difference operators on input links, as
well as the STRUCTS matcher (Section IV-B).

We give the source elements and ontologies to our matchers
(red arrows in Fig. 3). One possible approach to compose
our matchers is to first union the output of the semantic and
syntactic matchers (annotation C in Fig. 3). However, while
this would yield good recall, the precision may suffer due to
the false positives produced by SYNM and SEMA, which add
to each other. To avoid such situation, we first use the negative
signals from the semantic matcher to remove false positives
from the syntactic matcher, through the set-difference operator
(B in the figure). We then add the positive matchings (C). Last,
we use STRUCTS to curate the produced links.
Alternative semantic propagation graphs. In some cases,
users may have domain knowledge to inform better orches-
tration plans. For example, for a repository of data in which
schema names are not descriptive, users may opt out from
using the attribute level matchers and rely only on the relation
matchers. For very flat ontologies, where the structure will
not provide much meaning, users may choose not to use the
structural summarizer to avoid missing any true positive. We
make it easy for users to tune the DAG based on their needs
through a fluid API, i.e., method cascading, which is easy to
use, and we perform some safety checks, such as warning of
cycles in the DAG definition.

B. Structural Summarizer

Many of the output links of the SEMPROP DAG link the
same source element to multiple different classes in an ontology.
This is mainly due to two reasons: (i) no matcher is exact; they
produce some spurious results and (ii) the same source element
may match multiple classes but at different granularities, i.e.,
different levels of the ontology. In the latter case, these multiple
links may be all correct, e.g., an attribute Cell may match to
Plant Cell as well as to Human Cell and to the ancestor of
these two classes, Cell Line. Some of the links may also be
wrong, e.g., a syntactic matcher may identify Cell Type link
to Plant cell type, Human cell type, and also Bell type.

Our structural summarizer, STRUCTS, summarizes the
multiple links into fewer, more general links by exploiting
how the classes are related to each other in the ontology.
When all the links are correct, such as in the first example

Algorithm 1: Structural Summarizer

1 def structuralSummarizer(links, cuttingRatio):
2 hierarchySeqs = getSequences(links)
3 trie.addSeqs(hierarchySeqs)
4 (linksToSum, cutter) = findCutter(trie,cuttingRatio)
5 outputLinks = []
6 newLink = reduceTo(linksToSum, cutter)
7 outputLinks.add(newLink)
8 return outputLinks
9 def findCutter(trie, numSequences, totalNumSequences,

10 cuttingRatio):
11 chosenChild, numReprSeqs = chooseMaxReprChild(trie)
12 ratioCut = numReprSeqs / totalNumSequences
13 if ratioCut > cuttingRatio:
14 return findCutter(chosenChild, numReprSeqs,
15 totalNumSequences)
16 else:
17 linksToSum = retrieveLeafsFromNode(chosenChild)
18 return linksToSum, chosenChild

above, summarizing helps reduce the number of generated
links generated transitively—which helps reduce redundant
information. In the second case, summarizing can help eliminate
spurious results, such as Bell type, which will not have the
same ancestor as Plant and Human cell type.
Algorithm. STRUCTS is implemented using Algorithm 1.
When a source element has more than a specified number
of links, summaryThreshold, we invoke STRUCTS with the
set of found links (note the check for summaryThreshold is
not in the algorithm; we start with the invocation at line 1).
We obtain the list of ancestor sequences, hierarchySeqs, for
each of the classes of the ontology (line 2), with each sequence
starting with the root of the ontology and finishing with the
corresponding class. We then represent all the sequences in a
trie (line 3). Each node of the trie maintains a counter of the
number of sequences that contain it. At this point, we want
to find the cutter node, i.e., the most specific ontology class
that summarizes the largest number of links (line 4).

The findCutter function (line 10) finds the deepest node in
the trie that summarizes at least a percentage of the total links,
a concept captured by the heuristic variable cuttingRatio.
The function chooses the child of the current node (line 12)
that represents the largest number of links—this information
is kept in the counter we maintain while feeding the trie with
sequences. When there is no child that represents more links
than cuttingRatio, the function returns all the children of
the current node (line 15) as well as the current node, which
becomes the cutter. At this point, we have obtained a subset
of the input links, linksToSum, that can be summarized with
the cutter class. The algorithm now checks whether it is
possible to summarize a large enough number of links, given
by the cuttingRatio heuristic and if so, it creates a new
link, newLink that summarizes the represented links (line 6).

We use STRUCTS twice in our SEMPROP DAG (see Fig. 3).
First, at the output of SEMA(+), to eliminate common spurious
links produced by the semantic matcher. Second, at the end of
the DAG, to curate the final links.
Intuition of the cuttingRatio parameter. If we aimed to
summarize all the links, then we would force STRUCTS to
find an ancestor class which also covers the potential false

Algorithm 2: Transitive Link algorithm

1 def findTransitiveLinks(matchings):
2 links = []
3 # class -> [sch1, sch2...]
4 invMatchings = createInvMapping(matchings)
5 for class in invMatchings:
6 ancestors = ancestorsOfClass(class)
7 for ancestor in ancestors:
8 if ancestor in invMatchings:
9 l = checkAndCreateLink()

10 if l:
11 links.add(l)
12 relations = getRelationsOf(class)
13 for r in relations:
14 targets = getTargetsOf(class, r)
15 for target in targets:
16 if target in invMatchings:
17 l = checkAndCreateLink()
18 if l:
19 links.add(l)
20 return links
21 def checkAndCreateLink(sch1, sch2, r):
22 if checks(sch1, sch2):
23 return createLink(sch1, sch2, r)
24 else:
25 return False

positives in the links; this would lead to poor (very generic)
links. Hence we need to omit some of the links. However, if we
do not summarize at least a large fraction of links, we may be
discarding valid links, therefore deteriorating the quality of the
generated links. In short, we aim to summarize as many links
as possible but not all—so as to not include false positives.
This suggests the cuttingRatio parameter value should be
high. We show this experimentally in the evaluation section.

C. Transitive Link Generation

When two source elements e1 and e2 have links to classes
of an ontology, and the classes of the ontology have some
relationship between them, we can create links by transitively
following those relationships. We show the pseudocode for
this simple approach in Algorithm 2. The produced links do
not have a type, they just indicate that two source elements
are related to each other. However, we annotate links with
descriptive labels that indicate the reason why they were
created.

Depending on how the classes are related in the ontology,
we create three kinds of annotations. We create isA annotation
when two source elements have a link to classes in the ontology
that are hierarchically related. We create a named-relation
annotation when the links against the classes of the ontology
have some non-hierarchical relation, in which case we use the
name of the relation as the name of the annotation. Last, we
can create an equivalence annotation when links point to the
same class in the ontology.

V. EVALUATION

We want to evaluate the quality of the links found by
SEMPROP. In particular, we ask: (i) What are the roles of
the different matchers in SEMPROP? (ii) How do real users
benefit from the addition of links in SEMPROP? (iii) What
are the merits of our coherent groups? (iv) Can we have
a faster approach to filter inadequate ontologies to make

SEMPROP more efficient? (v) Can our techniques improve
the quality of other state-of-the-art schema matching tools?
(vi) Can SEMPROP help curate primary key foreign key (PKFK)
relationships?

Datasets. We describe the datasets used in our evaluation:
• CHEMICAL: We use the ChEMBL database and the

DrugBank database. As reference data we use Experimental
Factor Ontology (EFO), UniProt, and GO. ChEMBL and
DrugBank have around 70 tables with around 600 attributes
each. EFO has around 20K classes and GO around 80K. We
obtained ground truth for this dataset by manually inputting
every source element of the databases in the web interface of
EFO, and then creating links to the first concept that appeared
there. We handed our ground truth to domain experts to verify
its quality. Following this laborious process, we found 127
links (about 1/6 of the total source elements).
• MASSACHUSETTS OPEN DATA: We use 300+ CSV files

from the Massachusetts Open Data portal and used DBPedia
[19] as reference ontology. We could not obtain ground truth
for this dataset, so we use it as part of a user study.
• ENVIRONMENTAL DATA: We used around 30 open datasets

related to Environmental Protection Agency (EPA) in the US,
as well as some datasets from the open data initiatives of the
governments of the UK and Australia. As a reference ontology,
we use the environmental ontology [20]. We did not have a
way of obtaining ground truth for this dataset, so we use it as
part of a user study.

Setup. We used standard hardware for all our experiments:
a Macbook Pro 3Ghz Intel Core i7 with 8GB RAM and an
SSD. Our SEMPROP mechanism is implemented as part of
Aurum [21], a data discovery system which builds, maintains
and serves an enterprise knowledge graph (EKG): the structure
in which we materialize all the links, and that we use throughout
this evaluation. By default, we use word embeddings with 100
dimensions built with GloVe [10] on 6B+ tokens extracted
from Wikipedia [22], which is the model that worked better
for us. We also evaluate alternative models in Section V-C.

A. Merits of Different Matchers in SEMPROP

Our first experiment aims to understand the relative merit of
the different matchers, as well as demonstrating the rationale for
our SEMPROP DAG for combining matchers. For this purpose,
we split SEMPROP DAG into different slices, which are labeled
with letters from A to C in Fig. 3. We then executed each slice
alone and measured the precision and recall of the output links
with respect to the ground truth we obtained for the CHEMBL
dataset, which we use here. We obtained four sets of results by
configuring SYNM with four different thresholds, δ = 0.2, 0.4,
0.6 and 0.8. All these results are shown in Table II, which has
the different slices as rows and the different SYNM thresholds
as columns, and shows precision, recall and the F-measure for
each combination. The last line corresponds to running the
entire SEMPROP DAG.

What is the quality of SYNM? We used SYNM to obtain
a baseline for this experiment. SYNM corresponds to slice

TABLE II: Slicing SemProp DAG (precision/recall (F-measure);
numbers are in percentages. Columns indicate SynM threshold)

SemProp Slice 0.2 0.4 0.6 0.8
A 0.4/63 (0) 5/34 (8) 21/5 (8) 80/3 (6)
B 1/60 (1) 21/32 (25) 28/5 (8) 80/3 (6)
C 2/69 (3) 20/43 (27) 21/17 (18) 22/15 (18)
SemProp 47/66 (55) 41/43 (41) 29/22 (25) 28/20 (23)

A in SEMPROP (see table II). It uses the banding method of
locality-sensitive hashing to identify source elements similar
to ontology classes. We consider a link when the similarity is
above a threshold δ. We configure the matcher with different
thresholds that yield different tradeoffs in precision and recall.
The results for slice A in Table II show the recall is higher with
a low threshold. Because we prefer higher recall for discovery,
we choose the SYNM threshold of δ = 0.2. However, at this
point users would find many spurious links in the EKG.

Example of wrong syntactic results: We show an example that
explains the low precision of SYNM (slice A).
relationship_type -> Episodic Ataxia Type 7
drug_indication -> Serotonergic Drug

In the first example, the word type appears in both sides,
which causes the link. In the second example, it is the word
drug that appears in both sides of the link. When we look at
the surrounding words, however, it is easy to see these are not
semantically related to each other, even though there are entire
words that are syntactically identical.

Does SEMA(-) help curate false positives? We used SEMA(-
) to detect spurious cases (false positives) such as the one
above; the results are B in table II. Ideally, the negative
signals should cancel only false positives and not true positives,
hence, increasing precision without affecting recall. Using
as a baseline the results for SYNM with threshold 0.2, we
apply set-difference, removing the negative signals found by
SEMA(-). Doing this doubles the precision and maintains a
high recall. Despite removing half of the false positives, hence
the improvement in precision and recall shown in the table.

Example of false positives that are removed: The negative sig-
nals remove the examples shown above as well as other, less
obvious, but wrong links such as:
site_components -> Biopsy Site

In this example, the word site in the ontology side refers to
the physical site from which a tissue was removed. SEMA(-)
captured that biopsy site and components do not often appear
together—they are not semantically related—and deemed the
link as incorrect, therefore cleaning a spurious result.

Can we improve recall with SEMA(+)? We take the results
from SEMA(+) and add them to the previous result, which
corresponds to slice C of the SEMPROP DAG (see table II).
The recall improves consistently for all thresholds. Adding the
links from SEMA(+) increases the recall from 60% to 69% as
shown in Table II.

Example of correct results that are added: Some of the cor-
rect positive links that were added are:
isoform -> Protein
assays -> Pcr

 0

 0.2

 0.4

 0.6

 0.8

 1

A B C SEMPROP

Precision
Recall
F-measure

Fig. 4: The effect of adding STRUCTS after different slices
(A, B, C) in the SEMPROP pipeline, with threshold set to 0.2.
SEMPROP is optimized to achieve the highest recall.

The first one relates isoform, a type of protein, with Protein.
The second one relates Pcr—polymerase chain reaction, a
technique to amplify a segment of DNA—with assay.

Advantages of adding StructS. To understand better where
STRUCTS helps the most, we run it after each slice (A/B/C)
and compare the results with and without it. We configured the
syntactic matcher with δ = 0.2, which yields the best results.
The results for this experiment are in Fig. 4.

Results: We choose δ = 0.2 for this experiment. When we
apply STRUCTS immediately to the output of SYNM (A in the
figure), the precision increases up to 19%, but the recall drops
to 15% from the original 63%. This is because the many false
positives produced by SYNM means STRUCTS does not find
structures to summarize links. When we apply STRUCTS after
B, i.e., after eliminating false positives with SEMA(-), we see
a boost in precision. In this case, STRUCTS has an opportunity
to exploit any structure of the remaining links, hence further
removing spurious ones. At this point we have reached the
maximum F1 score in Fig. 4.

Why does the DAG continue then? The answer, one more
time, is that we care mostly about recall for discovery. The
precision value has an impact on how many links users
must assess before finding a useful one. The recall value
determines how many datasets we could connect successfully,
therefore opening up more opportunities for discovery. For this
experiment, (δ = 0.2) Slice C, which adds links produced by
SEMA(+) improves the recall and hurts the precision a bit.
Running STRUCTS once again at the end of the pipeline, which
is equivalent to running SEMPROP, increases the precision
without hurting the recall. Therefore, for our recall-oriented
application, SEMPROP achieves the best result.

How does STRUCTS affect other values of δ? Above, we
explained that the strategy that leads to the best quality links
is to configure the syntactic matcher with a low threshold and
rely on SEMA(-) to filter out spurious links. Therefore, we
chose δ = 0.2. At the same time, we have seen that SEMPROP
gives the best results (as per Fig. 4) for that value of δ, i.e.,
F-measure of 66. To verify that choosing a small δ is the
best strategy, we repeated the experiment of Fig. 4, but for
δ values of 0.4, 0.6 and 0.8 (the remaining in table II. The
F-measure values without and with STRUCTS are, respectively,
21/41, 21/25 and 21/23; this is much worse than with lower
thresholds. This makes sense: with higher values of δ there

’hyper.dat’ using 1:2:5

 1 2 3 4 5

summaryThreshold

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

cu
tt
in

g
R

a
tio

 0.44
 0.46
 0.48
 0.5
 0.52
 0.54
 0.56
 0.58
 0.6

F
-m

e
a
su

re

Fig. 5: Sensitivity of STRUCTS to summaryThreshold and
cuttingRatio parameters on the ChEMBL dataset

are fewer links produced, which leads to fewer opportunities
of summarizing them, thus a lesser impact of the STRUCTS.

Studying parameter Sensitivity of STRUCTS The quality of
STRUCTS depends on the parameters: cuttingRatio and the
summaryThreshold. The effect of these two parameters is
shown in Fig. 5. The figure shows how the best F-score is
achieved for cuttingRatio of more than 0.7, i.e., higher
values indicate that the algorithm will only summarize when
a large portion of the links are children of an ancestor. As
mentioned above, higher values indicate the aim to summarize
a large proportion of links but not all—therefore letting some
headroom to discard false positives. The best values for the
summaryThreshold are achieved as soon as there is more
than one link between a source element and an ontology class.
A higher value just prevents summarizing other links.

Our conclusion from this experiment is that the intuition
that the two parameters aim to capture is indeed shown
experimentally for this dataset.

Why the semantic matcher does not suffice to populate the
EKG? As explained earlier in Section III, this is due to the
existence of out-of-dictionary vocabulary. To confirm this, we
ran an experiment in which we generated links using only the
positive signals generated by SEMA. The maximum precision
achieved is 19% and the recall only 12%, which confirms that
using word embeddings alone does not solve the semantic
propagation problem. Instead, as demonstrated earlier, they
complement and improve recall and precision when used in
combination with other matchers.

In summary, by judiciously combining our matchers and
matching operators, SEMPROP achieves both good precision
and recall. Our technique helps to automatically find links
between source elements and ontologies with high quality
without human intervention.

B. User Studies: SEMPROP in the Wild

In this section we evaluate the usefulness of the seman-
tic links with a user study (Section V-B1), and with an
interview with experts to get their feedback about our links
(Section V-B2). We also report on an experiment to demonstrate
the utility of links to surface relevant datasets from a large
repository of sources (Section V-B3).

1) EKG User Study: The goals of our user study were
to (i) learn whether the links help users understand complex
schemas with which they are not familiar with and (ii) whether
links created by SEMPROP are more useful for this task than
those generated by using only syntactic matchers.

To evaluate these questions, we used the ENVIRONMENTAL
DATA dataset. We built an EKG using links created by both
SEMPROP and an alternative version that used only syntactic
matchers (called SYNPROP).

We showed the individuals in the study the links from the
two EKGs (we did not tell them they were from different
EKGs). We then asked them to choose the group that better
helps understand the underlying schema.
Study Procedure. We recruited 12 individuals with a computer
science background, familiar with basic database concepts, and
working in CS-related tasks.

Both SEMPROP and SYNPROP find a large number of
links; to limit the number shown to users we applied stratified
sampling. Specifically, each stratum was formed by links that
connected the same table. We then selected randomly among
those, reducing the total number of mixed links to 100.

To reduce the effect of congruence, expectation and avoid
the framing effect, we split the links into 4 groups, which were
randomized in a way that preserved the same ratio of links
per split. We further randomized the order within each split
3 times, for a total of 12 splits. We then presented one split
to each individual, so that 3 people would see the same set
of links in a random order. Regarding the second task, we
alternated the order in which we showed the groups to users.

Each user was given a short document (approx. 500 word)
that introduced the data, the overall task, and an overview
of the format of the links and meanings of the ratings. This
included an example. Users were also given a spreadsheet with
the generated links and asked to input their ratings.

The main result is that 8 out of the 12 users chose the
group of links generated by SEMPROP as more relevant
to understanding the schema than the links generated by
SYNPROP, demonstrating that users appreciate the value of
links generated by SEMPROP more than those generated by
the modified version that uses only syntactic ones, SYNPROP.

To complement the previous result, we asked users to
evaluate the usefulness of individual links. Users rated 29% of
the semantic links as very useful, and 27% in the case of the
syntactic links. However, users rated many more syntactic links
as “not useful” (41% vs 34%), because syntactic links have
not been filtered out by the semantic matcher, and therefore
contain low quality links between unrelated data elements.

2) Real Scenario: We now describe the experience of using
SEMPROP with expert users at a pharmaceutical company. We
generated links for an internal database with over 200 tables
(2.5TB), which is used daily by around 1000 analysts. Analysts
have usually access to an ER diagram of the database, as well
as an internal wiki page that the employees have created. We
wanted to understand whether the EKG was useful to facilitate
the navigation of the schema. We created an ontology with the
concepts and relationships that we extracted manually from
our interpretation of the wiki and used it as the reference data
(the validity of the ontology was independently verified by a
user of the database and one of the maintainers of the wiki
page). We then interviewed a senior analyst, who is a user of
the database, and the original author of the wiki page.

We highlight here some impressions: 1) The identified
links are useful to quickly locate data. Because the ontology
captures the information in the wiki page, which is written
with vocabulary our users were familiar with and contains tacit
knowledge to the company, the links quickly related those
concepts with specific relevant source elements in the schema;
2) links between source elements are useful to understand the
semantics of PKFK relationships—this is a feature we had not
anticipated (evaluated in section V-F).

Follow-up session: We built an EKG of their internal
database, ChEMBL [4] and DrugCentral [3], and we used
EFO [7], GO [23] and Uniprot [24] as reference data.
Our goal was to find links across databases which would
help them understand how their schemas relate to each
other. Some of the links were especially insightful, e.g.,
(”chembl22.variant sequences.isoform”) (”is a”) (”drugcen-
tral.target dictionary.protein type”.) In this session, they
pointed out that the ontologies are updated frequently, and
new ones appear often; it would be good to know quickly
which ontologies are helpful to explain concepts in the data
they know. This inspired us to provide an approximate, but
fast implementation of SEMPROP which helps analysts to
quickly decide if the ontology is worthy, before adding it to
the EKG (section V-D). We further discuss this feature and its
performance later in this section.

3) Surfacing relevant Datasets: In this experiment, we
wish to demonstrate the utility of links to surface, i.e.,
highlight, relevant datasets from within a large repository of
heterogeneous and independently created sources. We used the
MASSACHUSETTS OPEN DATA (described at the beginning of
the section) for this experiment.

We generated around 300 links between tables of the
repository, which we gave to three users, who had the task of
determining whether the tables in each link were relevant to
each other or not. We took the majority voting out of those
ratings and found that the users agreed on 58% of the links
being relevant. This is a good result because it means that users
find 1 relevant link for each pair of links we generate. Since
the baseline is not having any links at all, users would need
to compare, for each table of interest, whether it is related to
all the other tables, a time-consuming manual effort.

In conclusion, we demonstrated that the semantic links
generated by SEMPROP are better than those generated by
a syntactic matcher alone with 3 different datasets. One,
CHEMBL for which we had ground truth, and two others,
ENVIRONMENTAL DATASET and MASSACHUSETTS OPEN
DATA that we used as part of user studies.

C. Evaluating Coherent Groups

SEMPROP depends on SEMA, which depends on coherent
groups. We explore other methods for combining WE as well
as WE trained on different corpuses.

Why not using other methods to combine word embed-
dings? We implemented 3 other methods to combine word
embeddings [12]. Averaging WEs reduces by 30% the precision
and recall achieved with coherent groups. While adding WEs

TABLE III: Comparison of methods for combining WE

Methods Wikipedia
ChEMBL

+EFO
+GO

PubMed

Coherent Groups 47/66 17/60 24/55
AWE 34/47 12/45 23/49
Adding 41/50 14/50 20/49
Concatenate 40/49 13/50 20/41

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

20K 80K

R
un

ni
ng

 T
im

e
(s

)

Source Elements and Classes

SemProp
SemProp-LSH

Fig. 6: SEMPROP vs the LSH-based method

or concatenating and padding WEs performs slightly better
than averaging, they still do significantly worse than coherent
groups. In fact, in this case, many of the hits are due to the other
syntactic matchers of SEMPROP. An alternative to combine
word embeddings is doc2vec [11], which we trained with the
descriptions and documentation of EFO, GO and ChEMBL. It
achieved a precision of 36% and recall of 46%, again under-
performing coherent groups.

Do we benefit from WE trained with domain-specific
data? We used word embeddings trained with Wikipedia data
as well as with the corpus used to train doc2vec, and with a
corpus we generated from PubMed [25]. The PubMed word
embeddings consist of 17M vectors that cover the life sciences
domain. The model trained with Wikipedia data achieved the
best results. This is not surprising, a WE model is as good
as it models the language. Presumably the Wikipedia corpus
covers the English language better than the PubMed one.

D. A Fast Approach for Filtering Ontologies

Because the running time of SEMPROP increases as new
ontologies and databases are added, but not every ontology is
useful for discovery, we found it useful to quickly peek through
links before deciding to fully run SEMPROP to completion.
Fortunately, coherent groups have a property that makes it
easy to implement a lightweight, fast method. At their core,
coherent groups rely on dot products of vectors to obtain the
cosine similarity. Thus, they can be implemented using locality-
sensitive hashing [26], which can reduce the complexity of
finding links from O(n2) (all-pairs comparison) to O(n). We
implemented a lightweight version of the semantic propagation
mechanism, SemProp-LSH, that relies only on an LSH-
based implementation of coherent groups. This approach uses
LSHForest [27] and indexes the source elements twice. The first
index corresponds to the vector embedding obtained directly
from the dictionary, which we use to find positive links. The
second index corresponds to a rotation of the vector that permits
us to find negative links.

TABLE IV: Results of running SEMPROP on COMA baseline

Method Sim.
Threshold Precision (%) Recall (%) F1 (%)

COMA

0.2 18 35 23
0.3 23 35 27
0.4 49 24 32

COMA+B 0.3 48 31 37
COMA+C 0.3 34 43 37

To be useful, SEMPROP-LSH must run much faster than
the original semantic propagation mechanism and still yield
good links for users to be able to make a decision. Fig. 6
shows an order of magnitude difference between SEMPROP-
LSH and SEMPROP; thus, it is useful to bootstrap the search
with the LSH-based approach to preselect which ontologies
are more promising. For example, when running ChEMBL and
DrugCentral with EFO and GO (near 90K source elements
and classes), we obtain results within 10 minutes if we use
the lightweight method, in contrast to the 2 hours required by
the vanilla semantic propagation method. We observed that the
GO ontology in this case does not add many links to either
database, but contributes close to 60K classes, making the
process slower. By doing an early assessment with the LSH-
based method, we can easily prune the GO ontology, reducing
the running time to 16 minutes.

E. Improving a State-of-the-Art Matcher

Schema matching tools are not appropriate for semantic
propagation because they typically involve human interaction
and only produce matchings to the reference data. However, we
want to understand if SEMPROP can improve the quality of the
matchings obtained from these tools, so that we can leverage
the advanced techniques for the semantic propagation problem.
To this end, we used the community edition of COMA 3.0
(COMA for short), to find matchings between source elements
and ontology classes. We then use our SEMPROP DAG, where
we replace SYNM with COMA.

COMA setup. COMA provides an initial suggestion of the
matchings for a user to confirm/reject. It provides context-
dependent matching, fragment-based matching and reuse
oriented matching. To obtain the best results possible, we
used all the possible context-dependent matchers (that ran to
completion) and manually interacted with the tool as requested.

Baseline COMA results. We run COMA with different
thresholds; 0.3 yields the best results, 23% precision and 35%
recall. Note that the precision is much higher than that of
our plain SYNM matcher, while the recall is lower, see A in
table II. This makes sense – COMA is a schema matching tool
designed to produce correspondences for data exchange and
integration. High precision is important, as wrong results lead
to bad correspondences. In contrast, in semantic propagation
it is more important to achieve high recall, making sure no
relevant links are left behind. The question we evaluate here
is whether COMA can benefit from SEMPROP.

COMA + SEMPROP results. We choose the threshold that
yields the highest recall for COMA, i.e., δ = 0.3 as our
starting point. When removing false positives with SEMA(-)

(corresponds to B) we doubled the precision, from the original
23% up to 48%. It is interesting to look at sample false positives
we were able to remove:
class_level -> Clark level
mesh_heading -> reading

At the same time the recall slightly reduces to 31% from
35%. However, as in the case of SEMPROP, adding the positive
links with SEMA(+) (C in the table), raises the recall up to
43%, reducing this time the precision to 34%. We chose the 0.3
threshold because it yielded the highest recall. For completeness
we also run our mechanism on COMA with threshold of 0.4
(highest F-measure), but the end result is an F-measure of 36%,
with precision of 40% but a lower recall of 33%.

F. Semantic-based Curation for PKFK

Although this paper focuses on finding links, we envision
the EKG to maintain other types of links, such as PKFKs,
as these indicate how to join tables, and hence are useful for
discovery tasks. Because finding PKFKs across many databases
is an expensive process, there are approximate methods in the
literature, such as Powerpivot [28], which has a much lower
running time at the cost of some false positives PKFKs.

We want to evaluate how well SEMPROP can help curate
some of those false positives. If we find a negative link between
a candidate PKFK, we remove it, as it is likely a false positive.
For example, many keys are integers that span a similar range,
which leads to false positives such as a drug id being a PKFK
with employee id. We use SEMA(-) to find negative signals,
which may indicate false positives. Then we remove those.

We ran an implementation of the techniques from Powerpivot
and obtained a list of candidate PKFKs for ChEMBL. We
obtained 972 PKFK candidates, which, using the declared
PKFKs in the ChEMBL schema, correspond to a precision of
6% and a recall of 63%. By using SEMPROP, we were able to
remove 444 of those candidates, that is 45% of the candidates.
The good news is that all the removed candidates were false
positives, thus leaving the recall intact. Some examples of false
positive candidate PKFKs detected by SEMPROP are:
irac_classif.irac_class_id -> docs.volume
hrac_classif.hrac_class_id -> ligand_eff.sei

VI. RELATED WORK

Discovery and EKG. Our work is related to Goods [29],
Helix [30] and the Q system [31]. Goods [29] aims at finding
similar datasets by harnessing query logs, instead of creating
semantic links with a mechanism such as the one presented
here. Helix [30] uses an instance-based approach to discover
links; it does not work with pure ontologies and it does not
leverage word embeddings. Last, the Q system [31] answers
discovery queries through a template-based interface. The
system represents is-a connections used to query ontologies,
and not to find additional links in the data.
Schema and Ontology Matching. We consider:

(1) Table-Table matching. Tools such as COMA [32], Har-
mony [33], S-Match [34] and CLIO [35] have been developed
for schema matching. Most available tools are interactive tools

with a focus on finding the is-a relationship between attributes
from different relations. In contrast we (i) find relationships
beyond the is-a type to facilitate data discovery; and (ii)
leverage ontologies to link tables.

(2) Table-Ontology matching. We differentiate between: (i) col-
umn understanding, and (ii) column pair understanding within
the same table. For (i), there are techniques for discovering
schema semantics [36], [37], which are not automatic and
require human intervention. For (ii), there are approaches for
annotating Web tables using knowledge bases [38], [39], which
is also known as table understanding. We are different in
that: (a) We need an automatic process to bootstrap the link
generation without human intervention. (b) They are designed
to explain one table from one ontology, instead of finding
relevance across many tables via multiple ontologies; (c) none
of them leverage the benefits of word embeddings.

(3) Ontology-Ontology Matching. Link discovery between on-
tologies [40] finds is-a relationships across knowledge bases.
Tools such as CODI [41] and LogMap [42] were developed
for this purpose. We differ in that we target finding relation-
ships across relations by leveraging ontologies and use word
embeddings. Their output, is-a relationships among ontologies,
is complementary to semantic propagation.

Ontology Based Database Access. Systems like BootOX [43]
are designed for transforming relational databases into resource
description framework (RDF) ontologies and generate the
links between the database entities and the generated ontology
classes. Similarly, Ontop [44] and D2RQ [45] are proposed to
query RDMSs using SPARQL queries by viewing an RDMS as
a virtual RDF graph. These tools do not generate links between
source elements and reference data.

VII. CONCLUSIONS

Seeping Semantics revolves around two ideas: i) coherent
groups, which leverage word embeddings to assess the semantic
similarity across elements that contain multiple words, and ii)
an orchestrator that ensembles multiple matchers to identify
high quality links. We implemented SEMPROP as part of
Aurum[21]1, our data discovery prototype, and evaluated its
effectiveness in real scenarios.
Acknowledgements: We thank the users and collaborators that
participated in the user studies.

REFERENCES

[1] A. Y. Halevy, A. Rajaraman et al., “Data Integration: The Teenage Years,”
in VLDB, 2006.

[2] C. Zhang, C. Ré et al., “DeepDive: declarative knowledge base construc-
tion,” Commun. ACM, 2017.

[3] DrugCentral, “DrugCentral,” http://drugcentral.org/download, 2017.
[4] DB: ChEMBL 21, “ChEMBL: a database of bioactive drug-like small

molecules,” https://www.ebi.ac.uk/chembl/downloads, 2016.
[5] J. Goikoetxea et al., “Single or Multiple? Combining Word Representa-

tions Independently Learned from Text and WordNet,” in AAAI, 2016.
[6] Z. S. Harris, “Distributional structure,” Word, 1954.
[7] EFO, “EFO: Experimental factor ontology,” http://www.ebi.ac.uk/efo/,

2017.

1https://github.com/mitdbg/aurum-datadiscovery

[8] Y. Bengio, R. Ducharme et al., “A Neural Probabilistic Language Model,”
JMLR, 2003.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR Workshop, 2013.

[10] J. Pennington, R. Socher et al., “GloVe: global vectors for word
representation,” in EMNLP, 2014.

[11] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014.

[12] C. De Boom et al., “Repr. Learning for Very Short Texts Using Weighted
Word Embedding Aggregation,” Pattern Recogn. Lett., 2016.

[13] T. Kenter, A. Borisov et al., “Siamese CBOW: Optimizing Word
Embeddings for Sentence Representations,” ACL, 2016.

[14] H. Zamani and W. B. Croft, “Estimating Embedding Vectors for Queries,”
in ICTIR, 2016.

[15] I. Vulić et al., “Monolingual and Cross-Lingual Information Retrieval
Models Based on (Bilingual) Word Embeddings,” in SIGIR, 2015.

[16] S. Clinchant and F. Perronnin, “Aggregating continuous word embeddings
for information retrieval,” in CVSC, 2013.

[17] T. S. Jaakkola and D. Haussler, “Exploiting Generative Models in
Discriminative Classifiers,” in NIPS, 1999.

[18] E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” VLDB, 2001.

[19] P. N. Mendes et al., “DBpedia: A Multilingual Cross-domain Knowledge
Base,” in LREC, 2012.

[20] P. L. Buttigieg, C. Mungall et al., “envo,” https://github.com/
EnvironmentOntology/envo, 2017.

[21] R. C. Fernandez, Z. Abedjan et al., “Aurum: A data discovery system,”
in ICDE, 2018.

[22] G. P. built models, “GloVe: global vectors for word representation,”
https://nlp.stanford.edu/projects/glove/, 2017.

[23] GO, “GO: Gene ontology consortium,” 2017.
[24] UniProt, “UniProt: Protein ontology,” http://www.uniprot.org/database/

DB-0181, 2017.
[25] PubMed, “MEDLINE/PubMed Data,” https://www.nlm.nih.gov/databases/

download/pubmed medline.html, 2017.
[26] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards

removing the curse of dimensionality,” in STOC, 1998.
[27] M. Bawa, T. Condie et al., “LSH Forest: self-tuning indexes for similarity

search,” in WWW, 2005.
[28] Z. Chen, V. Narasayya et al., “Fast Foreign-key Detection in Microsoft

SQL Server PowerPivot for Excel,” VLDB, 2014.
[29] A. Halevy, F. Korn et al., “Goods: Organizing Google’s Datasets,” in

SIGMOD, 2016.
[30] J. Ellis, A. Fokoue et al., “Exploring Big Data with Helix: Finding

Needles in a Big Haystack,” SIGMOD Rec., 2015.
[31] P. P. Talukdar, M. Jacob et al., “Learning to Create Data-integrating

Queries,” VLDB, 2008.
[32] S. Massmann, S. Raunich et al., “Evolution of the COMA Match System,”

in OM, 2011.
[33] L. Seligman, P. Mork et al., “OpenII: an open source information

integration toolkit,” in SIGMOD, 2010.
[34] F. Giunchiglia, P. Shvaiko et al., “S-Match: an algorithm and an

implementation of semantic matching,” in ESWS, 2004.
[35] R. J. Miller, M. A. Hernández et al., “The Clio Project: Managing

Heterogeneity,” SIGMOD Rec., 2001.
[36] M. Taheriyan, C. A. Knoblock et al., “Leveraging Linked Data to Discover

Semantic Relations Within Data Sources,” in ISWC, 2016.
[37] ——, “Learning the Semantics of Structured Data Sources,” Web Semant.,

2016.
[38] P. Venetis, A. Halevy et al., “Recovering Semantics of Tables on the

Web,” VLDB, 2011.
[39] C. A. Knoblock, P. Szekely et al., “Semi-automatically Mapping

Structured Sources into the Semantic Web,” in ESWC, 2012.
[40] M. Nentwig, M. Hartung et al., “A survey of current link discovery

frameworks,” Semantic Web Journal, 2015.
[41] J. Huber, T. Sztyler et al., “CODI: combinatorial optimization for data

integration–results for OAEI 2011,” in OM, 2011.
[42] E. Jiménez-Ruiz et al., “LogMap 2.0: towards logic-based, scalable and

interactive ontology matching,” in swat4ls, 2012.
[43] ——, “BootOX: practical mapping of RDBs to OWL 2,” in ISWC, 2015.
[44] D. Calvanese et al., “Ontop: answering SPARQL queries over relational

databases,” Semantic Web Journal, 2017.
[45] C. Bizer and A. Seaborne, “D2RQ - treating non-RDF databases as

virtual RDF graphs,” in ISWC, 2004.

http://drugcentral.org/download
https://www.ebi.ac.uk/chembl/downloads
http://www.ebi.ac.uk/efo/
https://github.com/EnvironmentOntology/envo
https://github.com/EnvironmentOntology/envo
https://nlp.stanford.edu/projects/glove/
http://www.uniprot.org/database/DB-0181
http://www.uniprot.org/database/DB-0181
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html

	Introduction
	Approach Overview
	Technical Challenges and Contributions

	Overview
	Notation
	Problem and Solution Overview

	SemProp Matchers
	Word Embeddings
	Coherent Groups based on Word Embeddings
	Semantic Matcher using Coherent Groups
	Syntactic Matchers

	Semantic Propagation
	Orchestrating Matchers
	Structural Summarizer
	Transitive Link Generation

	Evaluation
	Merits of Different Matchers in SemProp
	User Studies: SemProp in the Wild
	EKG User Study
	Real Scenario
	Surfacing relevant Datasets

	Evaluating Coherent Groups
	A Fast Approach for Filtering Ontologies
	Improving a State-of-the-Art Matcher
	Semantic-based Curation for PKFK

	Related Work
	Conclusions
	References

