
Extracting Syntactic Patterns from Databases
Andrew Ilyas, Joana M. F. da Trindade, Raul Castro Fernandez, Samuel Madden

CSAIL, MIT <aiilyas,jmf,raulcf,madden>@csail.mit.edu

Abstract—Many database columns contain string or numerical
data that conforms to a pattern, such as phone numbers, dates,
addresses, product identifiers, and employee ids. These patterns
are useful in a number of data processing applications, including
understanding what a specific field represents when field names
are ambiguous, identifying outlier values, and finding similar
fields across data sets.

One way to express such patterns would be to learn regular
expressions for each field in the database. Unfortunately, exist-
ing techniques on regular expression learning are slow, taking
hundreds of seconds for columns of just a few thousand values.
In contrast, we develop XSYSTEM, an efficient method to learn
patterns over database columns in significantly less time.

We show that these patterns can not only be built quickly, but
are expressive enough to capture a number of key applications,
including detecting outliers, measuring column similarity, and
assigning semantic labels to columns (based on a library of
regular expressions). We evaluate these applications with datasets
that range from chemical databases (based on a collaboration
with a pharmaceutical company), our university data warehouse,
and open data from MassData.gov.

I. INTRODUCTION

Modern enterprises store their data in a wide range of different
systems, including transactional DBMSs, data warehouses,
data lakes, spreadsheets, and flat files. Data analysts often
need to combine data from these diverse data sets, frequently
incorporating external data from even more sources. A key
challenge in this setting is finding related data sets that can be
combined to answer some question of interest.

As an example, analysts at Merck—a pharmaceutical
company—often need to join tables that contain chemical
compounds. Unfortunately, there are at least three identifier
formats (e.g., InChI, InChIKey, and SMILES, shown in Fig. 1)
used internally in Merck, not to mention additional formats
that may be used in external data sources. Because of this
diversity of ID formats, a simple text search is not sufficient to
find relevant tables—attribute names are different. Indeed, they
cannot even perform an approximate search to find similar
content as these identifiers are not comparable. Manually
building a mapping between the identifiers in the different
formats and creating a lookup table is an expensive option.

O[C@@H]1[C@…

O[C@@H]1[C@…

COc1cc2c(Nc…

SMILES

InChI=1S/C2…

InChI=1S/C2…

Inchi

InChI=1S/C3…

HYNYUFZP…

UHTHHESE…

InchiKey

UZLMEAPB…

Fig. 1: Example of different chemical compound ID formats
A better option would be to label the relevant attributes with

useful metadata, e.g., assign a chemical identifier label to all
identifier columns in the table that represent. Unfortunately,
manual labeling is also infeasible in an company with large

volumes of data: it requires a great deal of time and is
error prone as it may miss many tables that contain relevant
information, especially when considering external data.

To address this problem, we observe that many relevant
attributes in enterprise databases are highly structured, i.e.,
they follow simple syntactical patterns. For example, in Fig. 1
the InChi number always starts with the pattern InChI= and the
InChiKey is a 14-character followed by a hyphen, followed by
a 10-character followed by another hyphen and an additional
character [1]. More common examples of structured attributes
are dates, product identifiers, phone numbers, enumerated types
(gender, etc.), and so on. Often these columns are stored as
strings in the database, but if they could be labeled with richer
structural information about the format of values, indexing,
searching and comparing values, and finding exceptional or
outliers values, could be done much more efficiently.

In this paper, we introduce XSYSTEM, a method to extract
syntactic patterns from datasets into data structures called
XTRUCTUREs. A XTRUCTURE represents syntactic patterns,
and can be compared with other XTRUCTUREs as well as
regexes. Once XSYSTEM learns a collection of patterns,
analysts can use them to conduct several commonly performed
tasks, including: automatic label assignment, where data items
are assigned a class by comparing them to a library of
known classes (written as regexs or XTRUCTUREs); finding
syntactically similar content, where learned XTRUCTUREs are
compared to see if they are similar, and outlier detection, where
a learned XTRUCTURE for a single item is compared to other
XTRUCTUREs to check that its structure is different. These
applications share two common requirements: (i) XTRUCTUREs
must be quickly synthesizable and (ii) XTRUCTUREs must be
comparable to each other and to regular expressions.

In addition to supporting these requirements, XSYSTEM
must: i) be able to work without human intervention, as
neither semi-automatic nor interactive tools scale for large
amounts of data; ii) learn syntactic patterns fast, which calls
for both an asymptotically efficient model as well as a
parallelizable implementation; and iii) be quickly synthesizable
and manipulatable given only raw datasets, since this is all
that many analysts may be able to initially access. Speed of
learning is crucial for real world scenarios, as not all data
analysis tasks can cope with stale data.

XSYSTEM. Our approach learns syntax from examples in-
crementally. For each example, it exploits the existence of
delimiters in known entities to split the problem of extracting
the pattern into learning the syntax of each of the tokens
separated by those delimiters. The underlying data structure

used to learn each token is a branching linear distribution
sequence that is equivalent to a Deterministic Acyclic Finite
State Automaton (DAFSA), which is asymptotically simpler to
learn than minimal Deterministic Finite Automata (DFA), often
used in regular expression learning. The learning procedure
relies on a branch and merge strategy that allows us to
incrementally adapt a prior to new observed examples. This
permits us to capture different syntactical structures that appear
in the same column. This branch and merge strategy is also at
the center of the parallelization approach used in XSYSTEM.

We evaluate XSYSTEM on the three applications mentioned
above on real datasets ranging from our university’s data ware-
house, open government data and a public chemical database.
We find that XSYSTEM can form a syntactic representation of
given data much faster than automatic DFA learners, and that
we can use it effectively for our target applications.

II. RELATED WORK

In this section we discuss our contributions in the context of
several techniques and research areas related to XSYSTEM.

Information Extraction. XSYSTEM is related to information
extraction (IE) in that it extracts a structural representation
from data. Most IE techniques extract structure from totally
unstructured data, such as text, or semi-structured data, such
as XML and HTML. In addition, most of those techniques
require variable amount of human input. XSYSTEM must work
automatically and it operates on structured data, producing one
succinct pattern that represents the syntactic structured of a
collection of input strings. XSYSTEM complements the existing
techniques in IE and achieves good performance in important
applications to large enterprises.

Regular expression inference. These techniques extract syn-
tactical patterns from collections of strings. The most recent
work uses multi-objective optimization and aggressive space
pruning to reduce the running time [2] of the inference process.
Performance is still an issue for the method to be used in
enterprise settings as their evaluation shows—more than 40
min for learning a dataset with 500 entries with 32 threads.
XSYSTEM reduces the unnecessary expressiveness of regular
expressions to gain in performance, as we will justify next.

Other methods can be divided into whether negative exam-
ples are required or not. Those that require negative examples
are rarely suitable in enterprise settings. Out of systems that
only require positive examples, [3], [4], and [5] are the most
relevant. With [3] we share our treatment of input characters as
their character class (referred to as token class in their case) to
produce a higher level abstraction of input data. Their method
learns a cyclic DFA, while we will show in this paper this
expressiveness is not necessary for the applications we target.
In the context of XML, the method in [6] learns concise regex
from a few positive examples, and it is also possible to generate
readable strings from the representation the method learns,
opening an avenue for comparison. Lastly, ReLIE [4] requires
example regular expressions, that are then further refined. We
differ in that we operate without human input. Unlike all
this work, we focus on: i) designing XSYSTEM to capture

syntactical patterns in databases, and not to solve the general–
and more complex–problem of learning regular expressions
for infinite languages; ii) support efficient comparison of the
learned patterns, which we have shown helps in identifying
syntactically similar content, automatically labelling data, and
identifying syntactic outliers.
Program Synthesis. Program synthesis based methods have
seen a surge in popularity [7]–[9]. Unlike XSYSTEM, their goal
is typically to operate and transform data, for example for data
cleaning. This means that the complexity of the structured
they need to build and maintain internally is higher than
that of XSYSTEM. For example, BlinkFill [10] must build
an InputDataGraph to then transform the data that is more
expensive to build than XSYSTEM, and unnecessary for our goal.
Other techniques, such as [7], [8] require negative examples
and differ again from our automatic technique.

III. MOTIVATION AND REQUIREMENTS
In this section, we use three applications that motivate XSYS-
TEM and its requirements.

1. Automatic Label Assignment.
Automatic label assignment attaches a semantic type (e.g.

“chemical compound ID”, “phone number”) to columns in a
dataset, so that users can understand the content of columns
and perform semantic search for similar types of columns.
A key observation is that many semantic types are already
available in regex libraries [11], and for important semantic
types inside an organization, writing such a regex is relatively
straightforward. For example, for the examples of Fig. 1.

XTRUCTUREs can be used only to determine syntactic
similarity and not semantic similarity. However, given a table
of (regex, semantic label) pairs, it is possible to learn a
XTRUCTURE for each attribute in the database, and then
perform a search for syntactically similar regexes. When there
is a match, the label associated to the regex is associated to
the column represented by the XTRUCTURE. This introduces
two key requirements for XTRUCTUREs: they must be 1) fast
to learn, since we need to infer them for every column in the
database, and 2) comparable to regular expressions.

2. Summarization and Attribute Comparison. Once some
interesting attributes are identified, data analysts often wish to
find other similar attributes across datasets (e.g., to obtain
candidates for joining two datasets together.) Rather than
comparing each pair of attributes using set-similarity joins or
approximate methods [12], [13], we can learn a more compact
representation, e.g., a XTRUCTURE for each attribute in a
database. We can then compare these representations instead
of the raw data, which offers the additional benefits of human
interpretability and reduced I/O usage.

Last, the cost of learning the XTRUCTURE is paid only once,
and can be reused subsequently for other applications as we
are describing in this section.

To be useful for summarization and comparison, XSYSTEM
must learn human-readable XTRUCTUREs, similar to regexes
in common programing languages, and XTRUCTUREs must be
comparable to one another, to permit finding similar content.

2215

ZIP Code

121091402

2127

2111

2110CHEMBL102037

CHEMBL102034

CHEMBL102038

CHEMBL

CHEMBL102036

CHEMBL102040

01/24/2003

12/27/2016

02/15/87

Date

12/12/2015

10/10/86

Fig. 2: Examples attributes

0 100 200 300 400 500 600
Number of tuples

0
500

1000
1500
2000
2500
3000
3500
4000

R
un

tim
e

(s
ec

on
ds

) Genetic Algorithm
Xtructure

Fig. 3: XSYSTEM vs. regex learning

0 1 2 3 4 5 6 7 8
Number of branches

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 tu
pl

e
at

tri
bu

te
s

Data warehouse
Chembl
data.gov

Fig. 4: Branches per tuple attribute.

3. Syntax-Based Outlier Detection. One long-standing prob-
lem in data management is concerned with data quality; in
particular, errors occur frequently, whether due to data entry
or anomalous values or readings [14].

We observe that by learning the syntactic pattern of an
attribute, we can detect many types of errors, particularly those
that are syntactic outliers, i.e., elements that do not closely
the match a learned XTRUCTURE. Consider the example of
Fig. 2, with real ZIP codes from Boston. The 4th cell value an
erroneous ZIP code. In this case, it is possible to detect that it
has a different length than other records in the same attribute
and does not fit the general syntactic pattern of the column.

To be able to detect syntax-based outliers, XTRUCTUREs
must support the concept of a scoring fit, i.e., a numeric score
capturing how well a value fits a learned XTRUCTURE. Also,
XSYSTEM to be used as an outlier detector, it must not overfit
the XTRUCTURE to all the values, or it will not detect outliers.
Instead, it must represent the general syntactical pattern and
not capture the content of a few outliers.

A. Motivation for a New Approach
Although the above requirements could be satisfied by learning
regular expressions (DFAs), regular expression learning [4],
[5], [15] is an NP-complete problem, and what that means in
practice is that solutions are extremely inefficient.

How inefficient is to learn regex?. To build intuition about
this inefficiency, we used a state-of-the-art regex inference
algorithm [2] to learn a regex over a few hundred tuples and
found that it took around an hour to complete. Figure 3 shows
the speed of learning a XTRUCTURE from data using XSYSTEM
with the state of the art algorithm [2]. Here we show the
time to learn a regular expression or a XTRUCTURE over a
column, as the length of the column (in tuples) grows. The
genetic algorithm based method is infeasible for our target
applications because it takes thousands of seconds to learn a
regular expression for a single column, making it impractical
to use in even a moderate collection of databases with a few
hundred columns. In contrast, the performance of XSYSTEM
with XTRUCTUREs grows sub-linearly with the number of
tuples, as we will show in subsequent sections.

If regular expressions were available, we could use them to
solve the application scenarios we showed above. However,
because regular expression learning algorithms solve a more
complex problem than what is needed for the applications
we have identified at a high computational cost, we sought
a simpler language that is both efficient to learn and that is
sufficient to capture the structure of many database columns.

The Opportunity. Fortunately, we have observed that real data
in databases is often quite simple, and does not require the full
expressivity of DFAs/regular expressions. In particular, most
attributes in database have the following properties:
• Simple structure. Through the wildcard “*” and “+”

operators, regexes allow infinite variability of structure within
a domain. In practice, on the MassData dataset (open data
from Massachusetts), we found that around 20% of columns
are fixed length, over half have only 3 distinct column lengths,
more than 85% have average length less than 10, and 99%
have average length less than 50, and similar trends are also
present in ChEMBL and data.gov. This makes sense because
databases are designed to be easy to manipulate and process;
constraining the data formats into well-structured values helps
achieve this goal. Further, many regular expression learning
papers focus on learning a minimal regular expressions, but
since database columns are already simple, minimality is not a
primary concern, especially if it comes at the cost of efficiency.
• Consistent structure. The optionality operator in regular

expressions allows one to construct concise expressions such
as “AB(C)D.” Instead, the equivalent “ABD|ABCD”, which
separates each pattern into a different branch is simpler to
learn. Fig. 4 shows that 40% of the attributes of data.gov
and two other datasets are representable by 2 global branches,
and nearly 100% by 8 branches. Again, regular expressions
unnecessarily favor expressivity over efficiency.

In short, regexes are neither necessary (too expressive)
nor sufficient (they are too slow) for solving the problem of
structure learning addressed in this paper. Instead, as we show,
less complex XTRUCTUREs can be learned more efficiently
while still capturing the structure of real databases.

IV. XSYSTEM IMPLEMENTATION

In this section we introduce the XTRUCTURE model to learn
syntactical patterns from structured data.

Branch
Layer

Token
Layer

Symbol
Layer

Token …Hinge Token

Branch Representation 1

Symbol
0

Symbol
n

Symbol
1 …

Token Representation 1

Character Distribution
within ASCII class

Fig. 5: Xtructure data model

A. The XTRUCTURE Model
The goal of XSYSTEM is to learn a XTRUCTURE from
examples {T} ⊆ A incrementally (tuple by tuple). To do this,
we design an architecture that allows us to probabilistically
model each example, and thus at any point output the “current”
representation. The architecture of XTRUCTURE (Fig. 5) has
several layers with distributions at the foundation; tuples are fit
into the model by passing them through this layered structure
in a well-defined way. The layers are organized hierarchically,
with each one taking care of a different aspect of the learning
process. We explain each layer’s role next.

The bottom layer in the hierarchy is the symbol layer, which
holds a distribution over the ASCII characters that occur at a
given position in the input tuples. This permits us to represent
a position in a tuple as a character class, an or-statement, a
single character, or a wildcard (“.”) based on the distribution.
For example, if a series of mm/dd/(yy)yy dates are fed to
a XTRUCTURE, the first character will hold a distribution
containing only the values 1 or 0, (since 0≤months≤ 12) of
the year. The second will eventually converge to a uniform
distribution over [0,9] and thus it will be represented with
the character class digit, D. We explain how we decide each
representation from later in the paper.

The token layer represents sequences of characters from
the original tuples, or tokens, obtained by splitting the original
tuple according to a set of delimiters, e.g., -, /, #. The intuition
is that delimiters often capture substructure of tuples. Consider
the “10/1/2017” date as an example: here the three tokens
are separated by /. Each token is represented in a token
representation, which is simply a linked list of symbols (from
the symbol layer). For dates, the “months” in the date will be
a token in the token layer, eventually represented as (0—1)D.
When no delimiters are available in the data, the entire string
is represented as a single token.

Tokens of different lengths cannot be represented with a
single token layer. The next layer in the hierarchy, called
branch layer, deals with variable-length data. Branch layers
consist of a list of token layers, and can represent an entire tuple.
In particular, a branch layer represents a list of tokens (captured
by token layers) interleaved with delimiters. In our “date”
example, we may find dates with two different formats for the
year, i.e. 4 vs. 2 digits. These two variations will be represented
with two different branches in a branch representation.

Each XTRUCTURE has several branch representations to
represent attributes with different syntactical patterns, for
example, tuples with different lengths. It is common to find
dates with many different formats, due to data quality issues,
as well as IDs, capitalization typos, etc.

Illustrative Example Introduction: Dates. In order to more
concretely ground the methods and ideas behind XTRUCTUREs,
we introduce an end-to-end running example, which we use
to illustrate each component of XTRUCTURE learning. In our
example, a XTRUCTURE is used to represent an date attribute
that takes different formats (MM/DD/YY, M/D/YY, etc.), while
permitting empty values as well as “N/A.” A XTRUCTURE

representing this attribute using the default set of parameters
would take the form shown in 6. Later, we introduce some of
the tunable hyperparameters for learning and representing the
data and discuss explicitly how they affect the XTRUCTURE
in our example.

Fig. 6: Example XTRUCTURE for “date”

B. Learning a XTRUCTURE

XTRUCTUREs are adapted after each input tuple is consumed.
When it gets a new tuple, XSYSTEM chooses an existing branch
for the tuple, if one exists, or creates a new branch and seeds
it with the input. This decision is made based on a measure of
scoring fit. The branch representation then segments the input
into tokens, K, based on a set of delimiters, and splits each
token, k, into characters, updating the token and symbol layers.

The following sections describe: (1) how we compute scoring
fit in Section IV-B1, (2) the branch-and-merge algorithm to
support multiple branches in Section IV-B2, (3) the approach to
tokenizing input tuples and feeding characters to the individual
layers in Sections IV-B3 and IV-B4, and (4) an optimization
to speed up learning in Section IV-C2.

1) Fitting Tuples: Scoring Fit
While learning a XTRUCTURE X , we must understand how well
a tuple, t, “fits” into the structure defined by X . We introduce
a scoring fit measure for this. More formally, given a tuple
t and a XTRUCTURE, X , we define an operation d(t,X) : R+

that indicates how far t deviates from the pattern represented
by X . This function is useful to fit new examples, as well as
to compare XTRUCTURE, both to itself and to representations
learned with other methods.

To build this function, instead of comparing each character
in t to a corresponding “character” in the representation X
(which is ill-defined, since our model holds a distribution
over characters rather than a single character), we look at
the characters S a symbol layer represents, and assign score
d(si ∈ S, li) for how close each si matches the representation
in symbol layer li. To define d, we use GET-ASCII-CLASS(c)
as the UNIX class (e.g., alphanumeric, white space, etc.) of
a character c , and l.class as the character class of a symbol
layer l (referred to as max class in Algorithm 2). We also
define l.is class to be a boolean indicating whether the layer’s
representation is its character class. This decision is based
on a χ2 test. If its p-value cannot be represented as an “OR”
operation over characters, then,

d(si, li) =


1 if GET-ASCII-CLASS(si) 6= li.class
α if not li.is class and si 6∈ li.chars
0 otherwise

where li.chars are the characters represented in the symbol

layer li, and the parameter α is used to determine how much
exact character matches are prioritized compared to matches in
class only (i.e. two characters). In practice, we set up α = 1

5
as a reasonable value for this relative weighting.

We use d to propagate the symbol layer scoring fit through
a XTRUCTURE’s layers, leading to a general scoring fit of
a tuple with respect to the model. In particular, for token
representations K, branch representations B and a modeled
representation X , the distance of a tuple t to X is defined by:

d(t,X) = min
b∈B

d(t,b)

that is, the minimum distance of the tuple with one of the
branch representations, b, of X , which is in turn defined as:

d(t,b) = ∑
ki∈b,ti∈t

d(ti,ki)

where ti are the tokens of the input tuple, t, that are compared
with the token structures, ki, of X as follows:

d(ti,k) =

[
∑

li∈k,si∈ti

d(si, li)

]
+ |len(ti)− len(k)|

Note the extra term in the last equation used to pad with null
characters whichever is shorter between the token structure, ki
in X and the token ti in the tuple t. This ensures XSYSTEM
does not incorrectly penalize smaller valid instances of the
underlying finite language, while still creating a new branch
in the structure for them. For example, a column that contains
several instances of “123” and one instance of “1”, the latter
would be padded with 2 null characters.
Illustrative Example: Scoring Tuples. Suppose we have the
XTRUCTURE discussed in the introduction to our example
(Figure 6). Now, we consider the scoring of three new tuples: a
date “11/09/14,” a misspelled date “0A/25/38,” and a completely
misfit value “New York.” Table I illustrates how each of these
three tuples are scored, and as we expect, the score is 0 for the
correctly formatted string, slightly above 0 for the misspelled
date, and high for the misplaced value. We also see here the
effect of the α parameter, which controls how much the out-of-
range year (38) impacts the overall fitting score of the string. In
practice we find that XTRUCTURE is fairly robust to changes
in α , but in general as is demonstrated here, increasing α

penalizes out-of-distribution data more strictly.
String Chosen Branch Score
11/09/14 Branch 1 0
0{A}/25/[3]8 Branch 1 1+α

N{e}{w}{ }{Y}{o}{r}{k} Branch 3 7

TABLE I: Examples of scoring fit for the XTRUCTURE shown in
Figure 6 on three example strings. {} and [] represent the errors

that contribute 1.0 and α to the score respectively.

2) Representing Multiple Branches
In practice, data from the same attribute may contain values
with different syntactical patterns. For example, an ID might be
a 10-digit number, or simply “N/A”. This phenomena inspires
XTRUCTURE’s multiple branch representations (that is, why
we allow R to be b−dimensional). However, we have no way

of knowing a priori how many different patterns are in a set
of examples, a XTRUCTURE must somehow manage multiple
branches, updating and representing them appropriately.

Given a new input tuple, XSYSTEM must decide whether
to fit it into an existing XTRUCTURE branch, or create a new
branch capture the tuple’s syntactical structure. For this, we
use the scoring fit. For each input t, XSYSTEM finds the “best
matching” branch by doing bbest = argminb d(t,b); if d(t,bbest)
is below a branching threshold, the tuple is fit into that branch,
otherwise a new “empty” branch is created. The existence of
this branching threshold introduces the challenge of how to
tune it. To avoid manually tuning such hyperparameter, we
introduce an adaptive branch-and-merge technique.
Branch-and-Merge algorithm. The algorithm works as fol-
lows, with pseudocode shown in Algorithm 1. We hide the
unintuitive data-dependent hyperparameter, and instead expose
a maximum branches parameter (line 2), that indicates the
maximum number of structures that are meant to be represented
by a XTRUCTURE (b in the formal definition). This parameter
can be set up based on domain knowledge, or user preference,
e.g., if an analyst knows there are 3 ways of representing a
business entity, he/she can choose 3 as the number of branches,
as no more than those are expected to appear in the data.

Given a fixed branching threshold and the maximum number
of branches desired by users, XSYSTEM proceeds as follows:
for each new input, determine whether or not it “fits” within
any existing branch (lines 3-4)—if so, add it to this branch,
and otherwise, create a new branch (line 7). If the number
of branches ever exceeds the specified maximum (line 8), we
compute a pairwise distance between branches. The two closest
branches b1 and b2 are merged by fitting generated tuples from
the subsumed branch into the one subsuming (lines 9&11) –
and the new “branching threshold” is set to d(b1,b2) (line 10).

This adaptive mechanism allows XSYSTEM to correct for
undershot initial thresholds, but not overshot ones, so in
practice, the initial branching threshold is set to a small ε > 0.
The entire algorithm, including both picking the best branch and
branch-and-merge, is shown in further detail in Algorithm 1.

Algorithm 1: Fitting new words into XTRUCTURE

1 branching threshold ← ε

2 Function learn new word(word: String, max branches: Int) : void
3 best branch ← argminb∈branches b. f it score(word)
4 if best branch.fit score(word) < branching threshold then
5 best branch.add(word)

6 else
7 branches.add(new Branch(word))

8 if branches.length > max branches then
// fit(Bi, B j) returns how well Bi fits into B j

9 Bouter ,Binner ← argmin(Bi ,B j)∈branches f it(Bi,B j)

10 branching threshold ← f it(Bouter ,Binner)
11 Bouter .add word(w) ∀ w ∈ Binner .learned words
12 delete Binner

3) Tokenization and Character Fitting
To update the token layers, the input tuple is split into tokens
and then each token is fed to the layers of its corresponding to-
ken structure. The tokenizer uses special characters (delimiters)
as reference for alignment. The positioning of these characters

on a string is often an indicator of data type. For example,
IPv4 addresses blocks are separated by “.”, while dates are
usually “/” or “-” delimited.

4) Modeled Representation
During modeling, after receiving a new example and determin-
ing the token structures, each token is fed to the layers of its
token structure. A symbol layer, as introduced before, holds a
distribution of the characters it has seen, and represents them
with their character class when is statistically significant (see
Algorithm 2). Each layer is modeled as a sampling problem,
under the hypothesis that every character within the majority
character class is equally likely. A χ2 test of independence
is then performed, confirming or rejecting this hypothesis; if
confirmed, the layer represents itself by its character class (lines
11-12 in Algorithm 2). If the null hypothesis is rejected, then
there exists significant bias in the data source that should be
captured in the representation, so the layer instead enumerates
all fit tuples in an or-statement, in order of decreasing frequency,
until a specified “capture percentage” of the distribution is
captured. This corresponds to lines 14-20 of Algorithm 2.
Running this process whenever a new example is encountered
ensures we always model a valid XTRUCTURE.

Algorithm 2: Symbol layer representation of fitted tuples
1 We know all chars seen, and capture threshold is a parameter

output : A string representation of this layer
2 Function compress layer() : String
3 class proportions ← proportion of each character class seen

// e.x. {”A-Z”: 0.5, ”a-z”: 0.25, ”1-9”: 0.25}
4 max class ← argmax(class proportions)
5 max proportion ← class proportions [max class]
6 if max proportion > 0.95 then
7 chars to capture ← filter(x→ x ∈max class, all chars seen)
8 histogram ← histogram(chars to capture, bins=size(max class))

9 else
10 chars to capture ← all chars seen histogram ←

histogram(chars to capture,
bins=sum(size(class) ∀ class ∈ class proportions))

11 if ChiSquared(histogram) > p then
12 return max class

13 else
14 captured ← 0
15 sort all chars seen by frequency
16 representation ← []
17 while captured < capture threshold do
18 next char ←all chars seen.next()
19 representation.add(next char)
20 captured ←captured +frequency(next char)

21 return “|”.join(representation)

Illustrative Example: Learning Dates. Now, we return to
our example of representing an attribute of “dates” with
XTRUCTURE, and illustrate the algorithms outlined in this
section. In order to make the example instructive, suppose
that we have the partially trained XTRUCTURE given in 6;
we consider now learning the same “misspelled date” as
in the scoring example, and examine the effects of the
tunable parameters on the final structure. In particular, we
are interested in how the tunable parameters will affect the
learned representation:
• Capture Threshold: As the capture threshold increases,

we include more of the data distribution in the XTRUCTURE,

at the cost of potentially including outliers; in our example, if
the capture threshold is 0.9, then the data structure will likely
not change after training on a single erroneous example.
• Maximum Branches: Our example is fairly robust to the

maximum branches parameter, but it nevertheless has an effect:
setting it to 1 results in a single branch recognizing dates of
the form DD/MM/YY , which means that dates of the form
D/M/YY and NA are not scored, while setting the parameter
extremely high results in new branches being allocated for
typographical errors and outliers, which is also not desirable.

C. Optimizations
In this section, we describe several optimizations to XTRUC-
TUREs that help make our implementation effective in practice.

1) Parallel Learning
It is possible to learn XTRUCTURE in parallel by using the
branch-and-merge algorithm. When fitting a model, we can use
multiple workers, each one reading disjoint sets of tuples and
fitting them independently. This has the benefit of exploiting the
parallelism readily available in modern architectures, but leads
to more than one representation per attribute. At this point, we
can use the branch-and-merge algorithm to merge the branches
of the different built models, leading to a representation
equivalent to the one that a single worker would have learned.

2) Early Stopping
When learning from structured data, it is common for much
of the computation time to go to fitting tuples that do not
contribute to the final XTRUCTURE. Consider, for example,
a long list of well-formatted dates. After a few tuples, the
representation we are modeling will reflect the pattern, and
will not change as additional tuples are processed.

We can stop learning when the model has converged and
does not change after some number of new tuples are consumed.
To do this, we track how much the fit of new tuples changes
during fitting. Initially the scores are expected to change a lot,
they will decrease and become steady over time – especially
when the data is regular. The process of early stopping is
inspired by an application of the Central Limit Theorem which
we use also in Section V-A. The early stopping process is
shown in Algorithm 3. We stop when the average fitness score
tuples in the attribute drops below a threshold. To ensure
confidence, our idea is to sample the distribution in groups,
taking sample averages. These sample averages approximate a
normal distribution around µ , the desired mean. Thus, in order
to determine if the process should stop early, we generate
groups of n tuples and calculate their mean fitness in the
learned XTRUCTURE, as well as the standard deviation of the
approximately normal distribution. We use a desired confidence
of 95% to estimate the sample size (line 4).

This technique allows us to skip large amounts of data while
still finding good approximate representations. The method
fails when the attribute has many different branches that are
seen only later. For this reason, the technique is disabled by
default, and should be enabled when the user knows the data
is highly regular or randomly shuffled.

Algorithm 3: Fitting tuples to branches
1 all scores ←[]
2 latest scores ←[]
3 Function needed sample size(current std: float) : int
4 return int((1.96∗ x/0.1)2) // this is a normal distribution

5 Function new word(word: String) : void
6 if not done adding then
7 score ← ∑1≤i≤|layers| layers[i].add and out put score(word[i])
8 latest scores.append(score)
9 if len(all scores) = 30 // Application of Central Limit Theorem

10 then
11 score ← avg(latest scores)
12 all scores.append(score)
13 latest scores ←[]

14 current std ← stdev(all scores)
15 if len(all scores)>needed sample size(current std) then
16 done adding ←true

D. Tuple Generation and Human Readability
A XTRUCTURE needs to generate tuples that, though not
necessarily part of the given examples, conform to the domain
of the examples (f (X), formally). This is necessary for
comparison, as we see in the next section. Here, we explain how
to generate tuples from a XTRUCTURE (IV-D1). Related to the
generation of tuples is a string representation of XTRUCTURE
which is readable by humans, a useful property to provide an
overview of the data to humans which we describe in IV-D2.

1) Generating Tuples from a XTRUCTURE

To generate a tuple, XSYSTEM traverses the layers of the
XTRUCTURE bottom-up. It generates characters through its
symbol layers. These are concatenated into tokens by the token
layer, which also takes care of interleaving the delimiters as
necessary. Finally, tokens are concatenated into branches, and
the generator selects randomly the branch that would be chosen
to generate output a tuple.

To make sure each symbol layer generates characters
leading to tuples that represent the structure well, instead of
returning the representation of its character distribution, each
symbol layer draws randomly from its corresponding character
distribution, producing a string from the symbol layer. For
convenience, the compress layer function of Algorithm 2
returns such representation.

Illustrative Example: Generating Dates. Following the
above algorithm, we can generate dates from our learned
XTRUCTURE. Concretely, a single pass of the algorithm does
the following (using Fig. 6 as example): i) choose a branch
randomly (e.g., branch 1); ii) sample, for each token in the
branch, the character distribution (Uniform({1 ...9}) for Token
1 Char 1, Bernoulli(0.4)({0,1}) for Token 3 Char 1) and
append the sampled characters; ii) interleave the generated
tokens with the hinges, yielding the final string.

2) Making a XTRUCTURE Readable
We want to serialize a XTRUCTURE in a way that is easy
to read, akin to how regexes map the underlying DFA they
represent to a string. The algorithm to achieve this is similar to
our tuple generation algorithm, but instead of specific tuples,
we want to output the general string representation that is
represented by XTRUCTURE.

When traversing a XTRUCTURE’s layers bottom-up, we
propagate partial representations along the way. First, the
symbol layers return either an individual character, a character
class (e.g. #, \w, etc.), or a group of characters depending
on the result of the chi-squared test described in the previous
section. Then, all the symbol layer representations of a token
representation are appended, leading to a token, meaning that
for a token representation k1 with layers l1 through ln, where
in the following || represents the concatenation operator:

str(k1) =

nn

i=1

str(li)

These token representations are then interleaved with
the appropriate delimiters (kept during the learning pro-
cess) to form branch representations, given that: str(b1) =
str(k1)||h1||str(k2)||h2 Finally, this is propagated upwards
again, and the representation of an entire XTRUCTURE is simply
an OR of all of its branches:

R(X) = str(b1)||“|”||str(b2) ...“|”||str(bn)

Illustrative Example: Human-Readability. Following the
afore-described algorithm exactly yields the following human-
readable representation of our date XTRUCTURE:

(0|1|2|3)[0-9]/(0|1)[0-9]/(0|1)[0-9] | [0-9]/[0-9]/(0|1)[0-9] | NA

E. Complexity and Expressiveness Analysis
We analyze next the complexity of learning a XTRUCTURE,
performing branch-and-merge, serializing the XTRUCTURE as
well as matching new strings.

Complexity: Earlier, we showed that a XTRUCTURE is a
DAG where each node represents a character distribution,
internally implemented as a set of linked lists of character
symbols. This representation supports fitness, comparison, and
generation algorithms. Table III shows the time complexity of
these algorithms in XSYSTEM– all algorithms in XSYSTEM are
polynomial in the input size. There are three main algorithms:
“Scoring”, which assigns a fit score to a candidate word as
a function of how well it fits into an existing XTRUCTURE,
“Branch and Merge”, which samples a data column and decides
how to contract or split the XTRUCTURE when a new sample is
introduced, and “Serialization”, which converts a XTRUCTURE
to a human-readable and regex compatible notation. The
“Scoring” algorithm is used for both building a XTRUCTURE,
as well as matching a tuple against an existing XTRUCTURE,
e.g., for outlier detection.

Expressiveness: The “Scoring” and “Branch and Merge”
algorithms combined yield a data structure with the same
expressiveness as that of DAFSA. Below we provide proofs
of expressiveness XTRUCTURE w.r.t. to regular languages.

Lemma IV.1. A XTRUCTURE can be converted in polynomial
time to a DAFSA, and vice-versa.

Proof: Since a XTRUCTURE is a DAG where each node
represents a character distribution, a DAFSA that accepts all
instances accepted by XTRUCTURE can be trivially built in

Symbol Definition
Wd Data column width (max tuple length).
Sd Number of items sampled from data column.
Bx Number of branches in the XTRUCTURE.
Nx Number of nodes in the XTRUCTURE.

TABLE II: List of symbols used in complexity analysis.

Algorithm Time Complexity
Scoring O(Mx +Nx)≡ O(Bx ∗Wd)

Branch and Merge Sd ∗ (scoring+Bx ∗Wd)
Serialization O(Mx +Nx)≡ O(Bx ∗Wd)

TABLE III: Time complexity for XSYSTEM algorithms.

polynomial time via a BFS traversal of the XTRUCTURE.
Nodes either accept a single character, or any character from a
“character-class”. Edges in the XTRUCTURE are transitions in
the resulting DAFSA. Also note that this conversion to DAFSA
can be done in polynomial time because XTRUCTURE itself is
deterministic, e.g. the same string never occupies more than
one branch in the XTRUCTURE.

Theorem IV.2. XTRUCTURE expressiveness is equivalent to
the set of regular languages that can be represented by DAFSA.

Proof: Follows from the lemma; for every XTRUCTURE
there is at least one equivalent DAFSA, and vice-versa.

Theorem IV.3. XTRUCTURE is equally as expressive as the
finite regular languages, and is thus less expressive than DFA.

Proof: Since XTRUCTURE is equivalent to DAFSA, and
DAFSA is less expressive than DFA, it follows that XTRUC-
TURE is necessarily less expressive than DFA. Specifically,
XTRUCTURE cannot minimally represent regular languages
that contains cycles.

Note that we are not interested in learning minimal DFA in
XSYSTEM. Indeed, even if we had chosen a data structure that
has the same expressiveness as that of DFA (e.g., it allows
cycles), there is no polynomial time algorithm guaranteed to
produce a DFA of size at most polynomially larger than the
smallest consistent DFA using only positive samples [16].

In practice, we also do not need to learn minimal DFAs
here because our positive samples are drawn from highly
structured data, and instances of each language are finite,
e.g., emails, telephone numbers, and chemical identifiers. The
expressiveness of DAFSA alone is quite powerful and covers
all of our finite languages use cases, while also doing a good
job at situations where a dataset attribute is not finite and the
user only cares about tuples up to a certain size. For example,
assuming a dataset attribute is captured by a small cyclic
DFA, but we are only interested in instances of length at most
k, a DAFSA that represents this finite subset of the original
language, and that is at most k+1 states larger than the DFA,
can be obtained in polynomial time.

V. COMPARING XTRUCTURES

In this section, we explain how to measure similarity between
XTRUCTUREs (V-A1) as well as how to it efficiently in V-B.

A. Measuring Similarity for Comparison
The comparison operation of XSYSTEM relies primarily on
the scoring fit defined in the previous section and the Central
Limit Theorem, as we explain below.

1) Comparing with other XTRUCTUREs
We want a syntactic distance function between the structure
represented by different XTRUCTURE, such as D(X1,X2) :
R+×R+, that returns a pair of scores between 0 and 1
representing how well the structure of each XTRUCTURE “fits”
into the other. Previously, in Section IV-B1, we discussed a
scoring fit obtained when fitting a tuple to a XTRUCTURE. We
define now the fit of a XTRUCTURE, X1 into X2 as the average
scoring fit of the set of tuples represented by X1 that fit X2.

In general, it is infeasible to generate all possible tuples
represented by a XTRUCTURE. Instead, we model D(S,X2) as
a distribution for which we want to estimate the mean fit with
a certain degree of confidence. This reduces the problem from
one of generating all tuples, to one of generating a subset of
tuples that will allow us to estimate the mean fit in a statistically
significant manner. However, to reliably estimate the mean fit
we would need the underlying distribution of the data, which
we do not know. We also do not want to make assumptions
about this distribution: it will be multi-modal at best, and
completely irregular at worst.

To address this, we use the central limit theorem as in Sec-
tion IV-C2; sampling the distribution in groups approximates a
normal distribution around µ , the desired mean. Thus, in order
to compute the fit of X1 in X2, we generate groups of n tuples
from X1 and calculate their mean and standard deviation of
fit into X2; we use a 95% confidence interval to estimate the
sample size.

XTRUCTUREs as Proxy for Column Comparison. We show
experimentally in Section VI-B that for a reasonable distribution
of data and selection of parameters, XTRUCTUREs can act as
a proxy for attributes in terms of comparison. In particular,
XSYSTEM uses XTRUCTUREs to effectively compare attributes
and identify those that come from the same underlying
distribution. More formally, the XTRUCTURE comparison
score can be viewed as modified expected Hamming distance
aligned at hinges. In this distance function, index characters
are sampled independently at each branch, with probability
P(char|branch = {1, ... ,max-branches}).

2) Comparing with regexes
When comparing the structure represented by a XTRUCTURE,
X with one represented by a regex, R, we also want to obtain a
tuple of scoring fits: how well X fits R and the other way around.
As with the comparison process between XTRUCTUREs, our
approach involves generating tuples from the XTRUCTURE (or
regex), and then measuring how well the generated tuples fit
the regex (or XTRUCTURE). The difference from the approach
in the previous section is that tuple values are binary, i.e., either
X fits R or it does not (and vice versa).

To compute the similarity between a XTRUCTURE a regex,
we can calculate the probability of the structure held in a

XTRUCTURE, X , fitting a regex, R, as follows:

P(f it(X ,R)) =
N

∑
n=1

match(g(X ,n),R)/N

where the function g(X ,n) generates a tuple from X and the
function match returns 1 if a tuple fits R and 0 if it does not. The
total number of draws, N is chosen through standard application
of the CLT, which allows us to treat this as estimation of ˆPf it , a
Bernoulli random variable, and therefore get an approximation
within a certain range and confidence interval.

To compute the fitness of R with respect to X , we use existing
libraries that produce strings from existing regular expressions,
commonly known as xeger. Using one of these xeger-like tools,
we generate tuples from the regular expression and then we
apply the same technique in the opposite direction.

We use this approach to compare XTRUCTURE with already
existing regular expressions for our automatic label assignment
application. We obtain good results that we present in the
evaluation section. However, it is worth noting a few limitations
of the approach with respect to the XTRUCTURE-XTRUCTURE
comparison method.

First, if a regex is too specific the similarity with a nearby
structure may be counter-intuitively low. For example, the
structure of a regex that represents exactly ”ABCD” will have
a low similarity to a XTRUCTURE’s structure that represents

”ABCE”, while this would not be the case if the two structures
to be compared would be represented by XTRUCTUREs.

Second, due to our need to generate tuples from the regular
expression, the regex must be finite, so wildcard characters
are not allowed. Although seemingly limiting, this is not a
great disadvantage, as highly structured tuples will tend to lack
wildcard characters – which indicates a lack of structure.

Why not compare regexes with the original data di-
rectly? A natural question is why do we compare a XTRUC-
TURE with a regex instead of comparing the original data
directly to the regex. There are three key advantages to our
approach. First, it is easy to sample from a XTRUCTURE, as
it already represents the branches in the underlying data. The
alternative would be to perform expensive random sampling
on the data directly, which is difficult if we want to sample
from all the possible syntactical variations. Second, sampling
from XTRUCTURE involves generating tuples in-memory and
feeding them in streaming to the XTRUCTURE, as opposed
to accessing and reading data from a data source. This is
especially beneficial because we need to repeat this operation
every time a new regex is added to the library, which happens
often when multiple analysts participate in the process. Last,
it is more convenient to compare the XTRUCTURE learned
by XSYSTEM to the regexes as comparisons can naturally be
parallelized, and once the XTRUCTURE is learned, it is readily
available to be used with other applications.

B. Efficient Large Scale Comparison
Recall that one of our applications is to find which attributes
are syntactically similar. Naively, this entails performing an
all-pairs comparison of XTRUCTURE, an O(n2) operation that

becomes prohibitively expensive in settings with large numbers
of attributes. We rely on an approximate technique based on
locality-sensitive hashing (LSH) [17] with minhash signatures.

Adapting LSH with minhash to XTRUCTURE is challenging
because we do not have sets of elements, but XTRUCTUREs
that can generate them. The XTRUCTURE, however, does
not generate sets of tuples deterministically, and the space
of tuples it represents can be very large, making it difficult
to generate good minhash signatures. In addition, instead of
estimating the syntactic similarity of XTRUCTURE we would
be just estimating the similarity of the sets of tuples they
generate, which is not what we want. For this method to
work, we need a way of generating minhash signatures from
XTRUCTUREs deterministically and in a way that captures the
syntactic features learned during the building process.

We solve this by generating triples of the form (character,
last hinge, index). The first element represents the character or
character class, the second one is used to determine the token
of which the character is part, and the last one is the position of
the character within the token. Codifying all this information in
triples preserves the structural information in a way that allows
us to still employ minhash. For example, for the string AB;CD,
we would generate the set (A,0,0),(B,0,1),(C,1,0),(D,1,1)). With
the set available, we then use minhash to obtain a signature.

In our evaluation we show that this method greatly reduces
the comparison runtime, with a minor reduction in accuracy.

VI. EVALUATION

In this section, we look at the performance of XSYSTEM
and study how it helps address our motivating applications.
Using a range of real datasets and workloads we (1) study
how XSYSTEM can propagate labels from annotated regexes
to columns in the datasets (VI-A); (2) use XSYSTEM to
learn XTRUCTUREs on columns of a dataset, and use these
XTRUCTUREs to identify syntactically similar content (VI-B);
and (3) use XSYSTEM to detect syntactical outliers from real
data (VI-C). We also conduct a series of microbenchmarks to
understand the performance of XTRUCTURE (VI-D).

Datasets and setup. We use the following datasets: i) univer-
sity data warehouse (DHW) which consists of 161 tables and
1690 attributes with information about departments within the
university; ii) ChEMBL (CHE), a public chemical database
[18] with 70 tables and 461 attributes; iii) data.gov (GOV),
US open government data, consisting of 2250 CSV files;
and iv) MassData (MAS), the open government data from
Massachusetts, from which we use 10 attributes for our outlier-
detection experiment. For the outlier-detection experiments we
also use the KDDCUP99 and Forest Cover datasets [19], which
are standard datasets used in outlier detection. Unless otherwise
specified we set maximum branches to 3, the branching
threshold to 0.1, and the capture threshold to 85%. For all the
single-threaded experiments (all except as indicated), we use a
computer with a 1.7GHz Intel Core i7 and 8GB RAM.

A. Automatic Label Assignment
To automatically label columns, we need a pre-built library
of (regex, label) pairs that associate meaningful labels to the

syntactic patterns described by the regexes. Given such a library
(which works as well as ground truth), we can use XSYSTEM
to learn syntactic patterns for each column in the database and
compare these patterns with the regexes in the library. Then,
when we find a syntactic match between a XTRUCTURE and
regex, we assign the label to the column represented by that
XTRUCTURE. The quality of this application depends on the
quality of our comparison technique, which we evaluate here.

To obtain the library of (regex, labels), we manually assigned
(regex, label) pairs to more than 4,000 attributes from DWH,
CHEM and GOV. The specific number of attributes with
assigned labels is shown in the “# total attrs.” column of
table IV. The regexes are drawn from regexlib.com [11], which
has a collection of generic patterns. We also added domain-
specific regexes for chemical datasets. In both cases we choose
the most specific regex possible. For example, for an attribute
containing even numbers, we would use “\d\d(0|2|4|6|8)”
rather than “\d\d\d”.

We used XSYSTEM to learn the XTRUCTUREs for the 4000+
attributes and searched for the nearest regex in the regex library,
using the algorithm of section VI-B. We compared this nearest
regex to the ground truth regex we manually associated with
each attribute. Table IV shows that we find over 94% of correct
matches for the three datasets we use. This means that we can
automatically assign labels to 94% of the data, which vastly
reduces the human effort that would otherwise be necessary.

Dataset total attrs. correct matches % matches
DWH 1504 1417 94%
CHE 307 294 95.5%
GOV 2476 2355 94.9%

TABLE IV: XTRUCTURE-regex correct matches vs. dataset.
Not all matches are equally useful. For example, we find

matches of columns to both InchI numbers and keys as well
as to SMILES, and both of are annotated with chemical id.
This vastly improves the discoverability of these attributes,
helping analysts with their tasks. In other cases, the match is
with a low specificity regex such as “strings” or “numbers”,
which although correct is not insightful. This is an artifact of
the quality of the (regex, label) pairs we had available. In the
enterprise scenario, we expect registries of regexes built by
domain experts to be of high quality, therefore leading to good
quality label annotation of the data.

In summary, this experiment shows that XSYSTEM is able to
propagate labels to attributes for a wide range of attribute
formats when a library of (regex, label) is available. This
is provided that the regex in the library are of good quality and
that XTRUCTURE are specific enough, an aspect we evaluate
in the microbenchmarks section.
B. Summarization and Comparison
In this experiment, our goal is to use XSYSTEM to find pairs of
syntactically similar attributes in a large dataset; such columns
often represent duplicates, or possible identifiers that can be
used in joins. For this application, we obtained ground-truth
data consisting of pairs of syntactically similar attributes from
CHE. We collect all attributes whose name contains “id” (e.g.
“tid,” “cell id,” “tax id”); attributes were removed and tuples

shuffled in random order; a volunteer labeled pairs of these
shuffled nameless attributes as syntactically similar/different.
We obtained labels for about 1000 pairs of attributes. We learn
XTRUCTUREs for each attribute.

We evaluate the effectiveness of XSYSTEM at finding syntac-
tically similar pairs. First we perform an all-pairs comparison
between the learned XTRUCTUREs using the method described
in V-A1. This is O(n2) but is an intuitive method, useful when
the number of attributes is small, or when we want to quickly
find all IDs in a database that are syntactically similar to one
pre-selected column ID. In this experiment, the method labels
a pair of columns as syntactically similar when their similarity
is above a given threshold, and then we measure precision and
recall of the results, which we show as the “All Pairs” line
in Fig. 9 (left). The figure shows a good accuracy, with the
method reaching an F1 score of around 0.82, and maintaining
constant high precision until a recall of about 0.8.

Fast Comparison. Because all-pairs comparison becomes
expensive with thousands of attributes, we implemented the
approach of section V-B. When using this approach, XTRUC-
TUREs are clustered based on the approximate Jaccard distance
between their signature sets. These clusters were then translated
into pair labellings, giving an O(n) time algorithm. The
precision and recall results for the same experiment using
this method is shown on the “MinHash LSH” line of Fig. 9
(left). The figure shows that the quality of this alternative
method is in fact similar to the all-pairs one, with the curve
shapes looking similar. The slight irregularities in the curve
(lack of smoothness) at high recalls are due to the cluster-based
nature of the LSH method, rather than direct comparison of
each pair of attributes. This makes sense because since we must
pre-generate strings to generate the MinHash signature, we
make sure the strings uniformly represent the underlying data,
therefore increasing the signature quality. We further explore
the details of the performance tradeoff of these two methods
in the microbenchmark in section VI-D.

Qualitative Analysis. When the techniques yield errors, we
found them to be quite intuitive. For example, one common
error we found was due to irregularities in the data, such as two
similar attributes not being detected because one used “nan”
to denote missing data, while the other used “-1”. Another
common kind of error came from attributes with diverse
representations and implicit semantic meaning. For example,
a human may label two attributes containing variable length
decimal numbers as different if the mean or standard deviation
of the numbers is different, which, in some cases XSYSTEM
is not able to detect, yielding false positives.

C. Syntax-Based Outlier Detection
Next, we evaluate XSYSTEM’s ability to detect outliers within
single attributes in a dataset. We use both the MAS dataset (for
which ground truth was manually collected through volunteers),
as well as the KDDCUP 1999 intrusion detection dataset and
the Forest Cover dataset (obtained from [19]). For quantitative
analysis, we use three of the outlier types from KDDCUP, as
well as the Forest Cover dataset; we then utilize the manually

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

P
re

c
is

io
n

Recall

All-Pairs

MinHash LSH
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0.8
0.6

0.4
0.2

P
re

c
is

io
n

Recall

KDD (Apache2)
KDD (Mailbomb)

KDD (Snmpguess)
Forest Cover

 0

 50

 100

 150

 200

 250

 1 2 4 8 16

T
im

e
 (

s
)

Number of Processes

Fig. 7: Left: PR curve for All-Pairs and LSH; Center: PR curve for outlier experiment; Right: Scalability microbenchmark

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

T
im

e
 (

s
)

Columns (sqrt(# comparisons))

All-Pairs (50%)
All-Pairs (99%)

MinHash LSH (50%)
MinHash LSH (99%)

Fig. 8: All-Pairs vs MinHash LSH methods

labeled MAS for qualitative discussion.
We learn a XTRUCTURE per attribute from a subset of the

tuples (with outliers present). We then freeze the XTRUCTURE
and feed it new tuples, obtaining a fitness score which we use
to find outliers. The score is transformed into an outlier score
using a weighted combination of the scoring fits (section IV-B1)
of each branch. We mark outlier scores that exceed an outlier
threshold. We present the resulting PR curves in Fig. 9 (center).

The figure shows the precision and recall for different
values of the outlier threshold. The results show near-perfect
performance on all four of the large datasets. Since XSYSTEM
excels with large quantities of structured data, we next perform
a qualitative analysis of outlier detection using MAS, a smaller
but more complex real dataset where outlier marking can
actually be quite subjective; this allows us to identify the areas
where XSYSTEM has the most difficulty.
Qualitative Analysis on MAS dataset. Many of the errors
made by XSYSTEM are ambiguous to humans; in particular, the
majority of the mistakes made were in an attribute representing
street address suffixes (ST, BL, AV, etc.). The source of
ambiguity is lower-frequency, but still valid street suffixes,
such as “BL” for boulevard, or “PL” for place, and whether or
not XSYSTEM marked these as outliers is simply a function
of the aforementioned outlier threshold. On the positive side,
the system found outliers that were indeed errors in the data,
such as a ZIP code in Boston with more than 8 digits (the
standard is 5 digits), or the tuple MIDNIGHT among tuples
representing hours as digits.
D. Microbenchmarks

Learning Speed. Properties such as number of tuples, number
of delimiters per tuple and pattern heterogeneity affect the
performance of XSYSTEM. To measure these effects, we
generated synthetic data with varying properties and then we
ran XSYSTEM on the data. Fig. 9(a, b and c) shows the running
times averaged 10 times, with median, 95th and 99th percentile.

In the first experiment (a), we use a fixed length data types
(country currency codes) and vary the number of tuples in

the input dataset. In the second experiment (b), we measure
the impact of the number of hinges, which has an effect on
the number of tokens that XSYSTEM must maintain. Here,
we create input datasets with variable number of hinges by
concatenating YYYY-MM-DD formatted dates, and fixed the
number of tuples to 1000. Finally, in the third experiment (c),
we vary attribute value length using datasets with 1000 tuples
and mixed data types, which has an effect on the total number
of branches that per XTRUCTURE that XSYSTEM maintains.

XSYSTEM’s performance in all 3 experiments grows linearly
with the variable of interest. Although absolute numbers are
higher in the third experiment, 99th percentile is below 10
seconds and median below 1 second.

Studying XTRUCTURE Specificity. The specificity of
XTRUCTURE is determined by how aggressively it repre-
sents the fed samples. For example, a XTRUCTURE with
"(1|2|3|4|5)" is more specific than "(D)". Layer com-
pression is in turn controlled by the p-value used during the
Chi control performed in line 11 of Algorithm 2.

To understand the impact of p-value on similarity to a target
regex, we vary its value and compare the fitness score of
each resulting XTRUCTURE against the regex. We run this
experiment over 1000 tuples of a “date” attribute. The regex
captures only valid instances of dates. Fig. 10 shows that
the higher the p-value, the longer the final XTRUCTURE is,
indicating a more specific fit. This makes sense: the higher
the p-value, the smaller the confidence interval and the more
likely the system is to treat sampled tuples as representative of
the underlying distribution. Hence, XSYSTEM is more likely to
include these samples in the learned XTRUCTURE as additional
branches.

In general, the fitness score is higher for larger (more specific)
p-values, and lower for smaller values. As an example, when
p-value is the lowest (least specific), the learned XTRUCTURE
is DDDD-DD-DD. The fitness score of a XTRUCTURE against
a regular expression is calculated by drawing samples from it,
and feeding them into the regular expression. In the case of
DDDD-DD-DD, even though the data only contained valid dates,
samples drawn from this XTRUCTURE may not necessarily
be a valid date e.g., 1234-56-78. So the less overfit the
XTRUCTURE, the higher its recall and the lower its precision.

Parallel Scalability. To understand the parallel scaling of
XSYSTEM, we generated data (about 20000 alphanumeric
identifiers) and learned a XTRUCTURE using a different number
of cores. We use XSYSTEM with max branches set to 7
and measure the time the learning process takes. Since the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5000 10000

T
im

e
 (

s
)

Number of Tuples

50th %ile
95th %ile
99th %ile

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10 12 14

T
im

e
 (

s
)

Number of Hinges

50th %ile
95th %ile
99th %ile

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

Average Row Length

50th %ile
95th %ile
99th %ile

Fig. 9: Performance microbenchmarks using synthetic datasets

0
10
20
30
40
50

X
tru

ct
ur

e
le

ng
th

p=0.1 p=0.05 p=0.01

0.00.20.40.60.81.0
Fit Score

0
10
20
30
40
50

X
tru

ct
ur

e
le

ng
th

p=10^(-3)

0.00.20.40.60.81.0
Fit Score

p=10^(-5)

0.00.20.40.60.81.0
Fit Score

p=10^(-10)

Fig. 10: P-value and fit-score effect on XTRUCTURE specificity

data is highly regular and XSYSTEM only consumes a few
samples before achieving 95% confidence and stopping early
(as described in section in IV-C2), we disable early stopping in
order to accurately demonstrate the effects of parallelization.

Fig. 9 (right) shows our results. As expected, adding paral-
lelism reduces the total runtime up to the maximum number
of hardware cores available in the experimental machine. The
system does not scale perfectly linearly after 8 cores due to
overheads during the merging stage of our algorithm, which
could further be reduced through optimizations, including
hierarchical parallelization of the merging operation itself.

All-Pairs vs. LSH Comparison. We want to understand the
runtime difference between the All-Pairs method and the LSH
one. We generate datasets of uniform column length, but with
varying numbers of columns. XTRUCTUREs are learned for
each column (untimed), and then every pair of columns is
compared using both the all-pairs method and the MinHash
LSH method. The experiment of Fig. 8 shows that for up to
about 10 columns (which corresponds to on the order of 100
comparisons), the all-pairs method outperforms LSH due to its
low overhead. However, for larger numbers of attributes, the
LSH method is superior in that it scales linearly.
Invariance to Tuple Ordering. Finally, we wish to measure
the invariance of XTRUCTURE to the random shuffling of tuples.
To do this, we take three different synthetic attributes of various
complexities, representing IP Address, Title, and Latin Word.
Each attribute contains 1000 tuples, and these are shuffled in
20 distinct ways. Table V indicates the variation across the
unique shufflings, both in fitting time, and in the “fitness score”
against the source column. The results show robustness against
bad orderings of tuples within an attribute.

VII. CONCLUSIONS
XSYSTEM learns XTRUCTURE, which represent the syntactic
structure of data. XTRUCTURE are less expressive than regexes,

IP Addresses Titles Latin Words
Example 159.112.55.237 Dr. cupiditate
Mean (ms/line) 0.27 0.23 1.0
Stdev (ms/line) 0.07 0.05 0.3
Mean score 0.18 0.25 0.41
Stdev score 0.02 0.06 0.12

TABLE V: Avg & std.dev learning time, fit with random shuffling

but orders of magnitude faster to learn, and expressive enough
to represent the highly structured data often found in databases.
We demonstrated XSYSTEM with 3 applications of interest for
data discovery.

VIII. ACKNOWLEDGEMENTS
We thank MIT IS&T for providing access to the DWH dataset.

REFERENCES
[1] S. Heller, A. McNaught et al., “InChI - the worldwide chemical structure

identifier standard,” Journal of Cheminformatics, 2013.
[2] A. Bartoli, A. De Lorenzo et al., “Inference of Regular Expressions for

Text Extraction from Examples,” IEEE TKDE, 2016.
[3] F. Brauer, R. Rieger et al., “Enabling Information Extraction by Inference

of Regular Expressions from Sample Entities,” in CIKM, 2011.
[4] Y. Li, R. Krishnamurthy et al., “Regular Expression Learning for

Information Extraction,” in EMNLP, 2008.
[5] H. Fernau, “Algorithms for Learning Regular Expressions from Positive

Data,” Information and Computation, 2009.
[6] G. J. Bex, F. Neven et al., “Inference of Concise Regular Expressions

and DTDs,” TODS, 2010.
[7] M. Lee, S. So et al., “Synthesizing Regular Expressions from Examples

for Introductory Automata Assignments,” in GPCE, 2016.
[8] J. K. Feser, S. Chaudhuri et al., “Synthesizing Data Structure Transfor-

mations from Input-output Examples,” PLDI, 2015.
[9] V. Le and S. Gulwani, “FlashExtract: A Framework for Data Extraction

by Examples,” in PLDI, 2014.
[10] R. Singh, “Blinkfill: Semi-supervised programming by example for

syntactic string transformations,” PVLDB, 2016.
[11] regexlib, “Regular expression library,” http://www.regexlib.com, 2016,

[accessed 15 Jan 2018].
[12] A. Arasu et al., “Efficient Exact Set-similarity Joins,” in VLDB, 2006.
[13] V. Satuluri and S. Parthasarathy, “Bayesian Locality Sensitive Hashing

for Fast Similarity Search,” VLDB, 2012.
[14] Z. Abedjan, X. Chu et al., “Detecting Data Errors: Where Are We and

What Needs to Be Done?” VLDB, 2016.
[15] D. Angluin, “Learning regular sets from queries and counterexamples,”

Inf. Comput., 1987.
[16] L. Pitt et al., “The Minimum Consistent DFA Problem Cannot Be

Approximated Within Any Polynomial,” J. ACM, 1993.
[17] A. Gionis, P. Indyk et al., “Similarity Search in High Dimensions via

Hashing,” in VLDB, 1999.
[18] A. Gaulton, L. J. Bellis et al., “ChEMBL: a large-scale bioactivity

database for drug discovery,” Nucleic Acids Research, 2012.
[19] M. Lichman, “UCI machine learning repository,” 2013.

	Introduction
	Related Work
	Motivation and Requirements
	Motivation for a New Approach

	Xsystem Implementation
	The Xtructure Model
	Learning a Xtructure
	Fitting Tuples: Scoring Fit
	Representing Multiple Branches
	Tokenization and Character Fitting
	Modeled Representation

	Optimizations
	Parallel Learning
	Early Stopping

	Tuple Generation and Human Readability
	Generating Tuples from a Xtructure
	Making a Xtructure Readable

	Complexity and Expressiveness Analysis

	Comparing Xtructures
	Measuring Similarity for Comparison
	Comparing with other Xtructures
	Comparing with regexes

	Efficient Large Scale Comparison

	Evaluation
	Automatic Label Assignment
	Summarization and Comparison
	Syntax-Based Outlier Detection
	Microbenchmarks

	Conclusions
	Acknowledgements
	References

