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ABSTRACT
Missing values are common in real-world data and may seriously

affect data analytics such as simple statistics and hypothesis testing.

Generally speaking, there are two types of missing values: explic-
itly missing values (i.e., NULL values), and implicitly missing values
(a.k.a. disguised missing values (DMVs)) such as “11111111" for a

phone number and “Some college" for education. While detecting

explicitly missing values is trivial, detecting DMVs is not; the es-

sential challenge is the lack of standardization about how DMVs

are generated. In this paper, we present FAHES, a robust system for

detecting DMVs from two angles: DMVs as detectable outliers and

as detectable inliers. For DMVs as outliers, we propose a syntactic

pattern detection module for categorical data, and a density-based

outlier detection module for numerical values. For DMVs as in-

liers, we propose a method that detects DMVs which follow either

missing-completely-at-random or missing-at-random models. The

robustness of FAHES is achieved through an ensemble technique

that is inspired by outlier ensembles. Our extensive experiments

using real-world data sets show that FAHES delivers better results

than existing solutions.

1 INTRODUCTION
Real-world data is dirty and may misguide any data analytical

task (a.k.a. garbage-in garbage-out), which may in turn lead to bad

business decisions. Among the different types of errors, missing

values constitute a challenging and well-recognized problem [23,

26], e.g., for drug disease analysis [18]. Generally speaking, there are
two types of missing values: explicit (i.e.,NULL values), and implicit

(a.k.a. disguised missing values [26] (DMVs)), e.g., “11111111” for a
phone number. While explicit missing values are notorious in many

data sets, DMVs are also widespread for various reasons, such as

the user did not want to provide the correct information (e.g., for
survey forms), the correct value might not pass the system check

constraints so a fake value is provided, the correct value is not

available at the time of entry (e.g., for creating a record in a hospital

before receiving the insurance policy number), and so on.
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Source Table Column DMVs

UCI ML

Diabetes Blood Pressurse 0

adult

workclass ?

education Some College

U.S. FDA Even Reports EVENT_DT 20010101, 20030101

data.gov Vendor Location Ref_ID -1

data.gov Graduation Regents Num s, -

data.gov.uk Accidents 2015 Junction Control -1

Table 1: Sample DMVs.

Detecting explicit missing value is straightforward. Unfortu-

nately, detecting DMVs is hard, since they can be either human

(carefully) faked values, or system generated values. Obviously,

there is no global representation for DMVs – different persons and

organizations will use different representations for DMVs. Conse-

quently, it is impossible to define general rules for all data sets –

DMVs in one table could represent legitimate values in other ta-

bles. In real applications, practitioners may have to write many

customized rules to detect DMVs per table, which is a daunting

task.

Before we present our solutions, let us show the prevalence

of DMVs in real-world data sets. We have manually checked 100

random tables from different repositories such as data.gov, data.

gov.uk, FDA
1
and UCI ML

2
, and we have found that more than

50% of these tables have DMVs. Some sample DMVs are given in

Table 1. We make a couple of observations from this table. There are

different DMVs for different numerical columns (e.g., 0 for Blood
Pressure and -1 for Ref_ID) – hard-coded rules must be data specific.

Moreover, some DMVs are legitimate values (e.g., “Some College”

for education, and 20010101 for EVENT_ID) – they may pass all

integrity constraint check.

In order to devise effective solutions, we categorize detectable

DMVs into the following cases.

(1) Out of range data values, e.g., disguise the missing values in

an attribute that takes only positive values with a negative

value.

(2) Outliers, e.g., disguise the missing values with a very large

value or a very small value such as replacing the missing age

values with the value 1000.

(3) String with repeated characters or characters that are next

to each other on the used keyboard, e.g., replacing a phone
number with 5555555555.

(4) Values with non-conforming data types, e.g., disguising the

missing strings with numerical values and vice versa.

1
https://open.fda.gov/downloads/

2
https://archive.ics.uci.edu/ml/index.php

1
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(5) Valid values that are randomly distributed within the range

of the data and used frequently in the data set.

In each of the above cases, DMVs can be treated as either out-

liers (cases 1-4) or inliers (case 5). For the case of sufficiently well

disguised values which are inliers, e.g., as in cases of a well thought

fraud, detecting them is out of the scope of this work.

Contributions. In this paper, we present FAHES
3
, an end-to-end

system to deal with the above cases. We summarize our contribu-

tions below.

(i) We formally define the problem of DMV detection, introduce

the architecture of FAHES, and present our DMVs ensembles

method (Section 2).

(ii) For detecting DMVs as outliers:

– We propose a syntactic outlier detection module (cases 1, 3

and 4) to capture those DMVs that are syntactic outliers or

contain special patterns such as strings with repeated sub-

strings (e.g., abcabcabc) and numbers with incrementally

increasing/decreasing digits (e.g., 1234567) (Section 3).

– We devise a numerical outlier detection module (cases 1

and 2) that best suits FAHES in terms of detection effective-

ness (represented by precision and recall), time efficiency

and minimal parameter setting. This module will detect

DMVs that are far from the rest of the values in the Eu-

clidean space (Section 4).

(iii) For detecting DMVs as inliers, we devise an algorithm for

detecting DMVs that follow missing-completely-at-random

(MCAR) or missing-at-random (MAR) models (case 5). The

algorithm leverages some the basic idea of DiMaC [15] but

significantly outperforms it for both in terms of efficiency

and effectiveness (Section 5).

(iv) We have conducted extensive experiment using real-world

data sets from diverse sources to show the wide applicability

of FAHES. FAHES can detect DMVs with good precision and

recall that cannot be achieved by other methods (Section 6).

We discuss related work in Section 7 and conclude in Section 8.

Furthermore, a demo showing how FAHES works was presented in

ICDE 2018 [28].

2 OVERVIEW
In this section, we first define disguised missing values (DMVs)

(Section 2.1). We then introduce the architecture of FAHES (Sec-

tion 2.2). We close the section by introducing an ensemble method

which will be used by each component of FAHES (Section 2.3).

2.1 Disguised Missing Values
Generally speaking, DMVs are values that are entered in a given

table to replace the missing values. The DMVs detection problem

can be formulated as follows [26]: letT = [ti j ], i = 1, 2, . . . ,m, j =
1, 2, . . . ,n be the true data table that is unknown, wherem and n
represent the number of tuples and attributes in T , respectively.
Let T̃ = [t̃i j ] be the recorded (input) dirty table. We would like to

construct a matrix T ′ with Boolean entries that represent the cells

3
From the Arabic word that means inspector.

Figure 1: FAHES Architecture.

with DMVs. That is, T ′ = [t ′i j ] where:

t ′i j =

{
1 if (ti j = ϕ ∧ t̃i j , ϕ)
0 otherwise

The symbol ϕ means that the cell is empty or ‘null’.

Note that, in practice, the number of DMVs for each attribute

of one data set is small [14]. Also, we focus on detecting frequent

DMVs since infrequent DMVs typically have little effect on analytics

such as simple statistics, hypothesis testing, and regression models.

2.2 Architecture
Intuitively, it is unlikely to come up with a single method that

could detect all different types of DMVs. Hence, we advocate a

multi-pronged approach, where different methods are designed to

detect DMVs based on their characteristics. Note that, this does

not exclude the case that one DMV can be detected by different

methods. Figure 1 shows the architecture of FAHES. The system

contains three main components.

Statistical Profiler. It collects two types of statistics, which will be
used by the detection engine: (1) per table statistics such as #-records
and #-attributes, and (2) per column statistics such as #-empty (null)

cells, #-numerical entries, #-strings and #-distinct values. For numer-

ical values, we also count #-positive/negative entries. The profiler

also stores the distinct values and their frequencies.

Detection Engine. It contains the different modules for the dif-

ferent types of DMVs. For DMVs as outliers, we have a syntactic
outlier detector which again contains a syntactic pattern discovery
and a repeated patterns discovery, and a numerical outlier detector.
For DMVs as inliers, RandomDMVD module detects DMVs that fol-

low missing-completely-at-random (MCAR) or missing-at-random

(MAR) model.

Figure 2 shows examples for different types of DMVs, using

different data sets. The red dots indicate the repeated single DMV

in different tuples. The DMVs in Figures 2(a,b) can be detected by

the numerical outlier detection; the DMVs in Figure 2(c) can be

detected using the syntactic detection module; and the DMVs in

Figure 2(d) are only detectable using RandomDMVD.

Aggregation. As mentioned earlier, the same DMV may be de-

tected by more than one module. The DMVs aggregator simply

returns the union of all detected DMVs along with the module that

detected them and the score they were assigned by that module.

Setting Thresholds. A general observation is that FAHES consists

of multiple detection modules with threshold values required by

2
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Figure 2: DMVs can be outliers as in (a) and (b) or non-
isolated values as in (c) and (d).

each module. The score values generated by our modules are nor-

malized to the interval [0, 1] where values that are close to 1 give

a strong signal about the value under test. A dynamic technique

to set these thresholds is used by sorting the score values starting

with the highest value and setting the threshold to the first large

difference between two consecutive score values. Threshold values

can also be adjusted based on the number of DMVs that could be

reported. In all of the data sets that we checked manually, no at-

tribute had more than 5 DMVs. Hence, if the used threshold reports

many DMVs, a more strict threshold should be used. In all cases,

strict thresholds that are > 0.99 works well for DMV detection.

2.3 DMV Ensembles
In order to improve the detection effectiveness of each detection

module, we use a DMV ensemble approach that is inspired by outlier

ensembles [2, 3] andmethods to derive a strong classifier frommany

weak classifiers [30]. Both DMV detection and outlier detection

are unsupervised problems since the data labels are not available.

The theoretical justification for our approach can be derived in

terms of the bias-variance tradeoff used in [3]. The difference is

that our system for detecting DMVs is built up of three different

modules where combining the score values of these modules is not

feasible. We instead use DMV ensembles to improve the detection

effectiveness of each individual component which will increase the

overall detection effectiveness.

Each detection component generates a score value in the inter-

val [0, 1], where normal values take score values close to zero and

DMVs have score values close to one. For a given value vi , assume

that the score s ′i obtained for vi using the scoring function f ′ has
a corresponding optimal DMV score si that can be obtained using

an unknown function f . Based on the bias-variance analysis in [3],

Class Representative Equivalent Regular Ex-
pression

Uppercase letters u A-Z

Lowercase letters l a-z

Digits d 0-9

Space s space|tab|new-

line|carriage-return

Dot t .

Hash h #

Punctuation p : |; |?

Enclosures e [|(|{|]|)|}

Special Symbols @|&|′ |”|_| − |, @|&|′ |”|_| − |,

Other Symbols y All other symbols

Alphabet a u |l

Word w a | − |_|@|&|, |.|′

Word+ v w |d | − |h |t

Table 2: The set of atomic and compound classes used to
build the syntactical profiler.

the mean integrated square that is used to quantify the accuracy of

the scoring function f ′ compared to the optimal unknown scoring

function f is defined asMSE = 1

n
∑n
i=1
{si − s

′
i }

2
. Many techniques

can be used to reduce the MSE of the computed score values such

as bagging, bragging, wagging and subagging [7]. In [2], it was

suggested to use subspace exploration for the methods that work

on multidimensional data where the scoring function works on

multiple subspaces to generate multiple sets of score values. For

methods that require parameter setting, it is suggested to use mul-

tiple values for the parameter. In both cases, it was recommended

to use the maximum score as a combination function to avoid the

dilution from irrelevant subspaces or poor parameter values that

would affect the averaging and the aggregation of the score values.

We adopt this latter for scoring candidate DMVs.

3 DMVS AS SYNTACTIC OUTLIERS
As discussed earlier, disguising the missing values could be done

using out of range values that do not conform syntactically with the

regular values in a given attribute. Thus, learning the data patterns

of each attribute could help detecting such DMVs. In this section,

we show how we discover syntactic patterns in a given attribute

and then use them to detect non-conforming values. We also show

how to tackle the special case of repeated patterns.

3.1 Syntactic Pattern Discovery
The syntactic pattern discovery module, SynPat for short, learns

for each attribute a set of patterns that represent the values within

that attribute. Discovering the syntactic structure for a set of values

in an expressive and compact way is an NP-complete problem [12].

Discovering the optimal set of patterns is out of the scope of this

paper. Instead, we focus on generating syntactic patterns that can

be used to describe most of the values in a column and hence allows

us to easily detect non-conforming values. Intuitively, the values

that have non-conforming syntactic structures (syntactic outliers)

compared to the structure of the majority of the values and that

appear frequently are likely to be DMVs.

3



KDD ’18, August 19–23, 2018, London, United Kingdom A. Qahtan et al.

Overview. Discovering the syntactic structure of a given attribute

requires developing a suitable syntactic representation of its values.

In structured data sets, many attributes, such as ZIP codes and

phone numbers, would have a dominant syntactic structure with a

few (maybe none) values with syntactically different patterns. A
syntactic pattern is a sequence of symbols (from a specific alphabet)

that represents the characters in a given value. For example, a phone

number with ten digits is represented by d10
while a ZIP Code value

could be represented by d5 − d4
. Our proposed approach is to first

construct an initial set of syntactic patterns and then aggregate

them to have a small set of patterns. Afterwards, we consider the

patterns that represents less than 1% of the distinct value in the

attribute as non-conforming patterns.

Generating initial syntactic patterns: To construct the initial

set of syntactic patterns, we define a set of atomic classes (alphabet)

for the characters in the attribute values, which are presented in

Table 2
4
. The special symbol class has no representative as each

symbol represents itself in the resulting pattern. The atomic classes

in Table 2 represent a partitioning of the text such that each data

entry in a given table has a unique representation.

For each attribute, SynPat accepts as input the set of distinct

values D encoded as strings and returns a set of patterns. The idea

is to find a set of dominating patterns that represent the values in

the given attribute. Any values that cannot be generated by one of

the dominating patterns is considered a candidate DMV. Finding

the set of dominating patterns involves discovering [24] (1) a set

of syntactic patterns P = {P1, P2, . . . , Pm } and (2) a partitioning

{D1,D2, . . . ,Dm } of the setD such that partitionDi is generated

by pattern Pi . Initially, SynPat tests the characters in the strings and
replaces each character by its corresponding class representative

from Table 2. The consecutive occurrences of the same class repre-

sentative in each pattern are merged and the number of consecutive

occurrences is stored. For example, the pattern for the value “Male”

is “ul3” which states that we have a single uppercase letter followed

by three lowercase letters. We should note that we do not count

the number of spaces, we use s instead of sk .

Aggregating syntactic patterns: For attributes with values that

follow a well defined syntax such as phone numbers and ZIP codes,

the initial patterns could be enough to discover the main patterns

and the non-conforming patterns. However, in other cases such as

for the attributes “employee name” and “product code”, the number

of discovered patterns is large due to the differences in the entries

length and the use of many characters that belong to different

classes within the same value. In such cases, we aggregate similar
patterns in order to reduce the number of discovered patterns and

discover the set of dominating ones.

We use the rules in Table 3 to aggregate similar patterns for re-

ducing the number of discovered patterns. This is an extended list of

the cluster class hierarchy presented in [20]. We use the superscript

sign "+" to represent any number of consecutive occurrences for

the same class symbol. Selecting the aggregation rule that should

be applied next is performed in a way that the number of remaining

patterns is minimized. Please note that the pattern "Any+" that
could represent any value is not defined in our syntactic profiler.

4
This is a modified list from the syntax of the POSIX Java regex classes.

ID Rule Description
r1 classk → class+ Ignore the number of occur-

rences

r2 u |l → a Replace the occurrence of
′u ′ or

′l ′ by ′a′ = Alphabet

r3 dk tdm → dk+m+1
Floating point numbers are con-

sidered digits

r4

uks → uk+1

Merge classes
′u ′ and ′s ′

suk → uk+1

r5

lks → lk+1

Merge classes
′l ′ and ′s ′

slk → lk+1

r6

aks → ak+1

Merge classes
′a′ and ′s ′

sak → ak+1

r7 ak (−|_|@|&|, |.|′) → wk+1

(−|_|@|&|, |.|′)ak → wk+1

Alphabet characters that are sep-

arated by special symbols are re-

placed by
′w ′

r8 (d | − |h)d
mwk → vk+m+1

wkdm (d | − |h) → vk+m+1

Merge more classes that are

likely to occur together

Table 3: The set of rules that are used to reduce the number
of discovered patterns. There are more rules in r3 − r8 where
the constants are replaced by ‘+’. We omit them from the
table due to space limitations.

r2

r6

r7 r8

Figure 3: The dependency between the rules in Table 3.

In this sense, our technique would guarantee to converge to a local

minimal number of patterns. In addition, some of the rules can only

be applied if others have been already applied. The dependency

graph shown in Figure 3 shows the different dependencies between

the rules. Any rule that is not in the graph can be applied at any

time since it does not have any dependencies. r6 can only be applied

after r2, r7 can only be applied after r2 or r6, and r8 can only be

applied after rule r7.

The pattern aggregation process will continue until the number

of discovered patterns becomes less than a given threshold γ , which
is given a default value of 5, or the set of rules has been exhausted.

The parameter γ controls the expressiveness/compactness of the

discovered patterns. Small value for γ will force more aggregation

rules to be applied which will merge more patterns in most of the

cases and vice versa. There are other cases such as the “description”

or “URL” attributes inwhich the values havemany different patterns

that are hard to aggregate.

Given a pattern Pi , we assign it two values, a contribution de-

fined as Ci =
qi
|D |

, where qi is the number of values in D that

are represented by the pattern Pi , and a DMV score defined as

SynSc(Pi ) = 1 −Ci . The process of discovering syntactic patterns
is presented in Algorithm 1. For each attribute, the algorithm starts

4
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Algorithm 1: SyntacticalPatternDiscovery
Input: D: distinct values in attribute A,

R: set of aggregation rules,

Dд : rules dependency graph, γ = 5

Output: P = { ⟨Rд, q ⟩ }: minimal set of patterns that represent D

and the number of values represented by each pattern

Rs : the sequence of rules used to get P

1 begin
2 P = ϕ , Rs = ϕ
3 for str ∈ D do
4 Rд = ReдEx (str )
5 if ⟨Rд, q ⟩ ∈ P then
6 P(⟨Rд, q ⟩) = ⟨Rд, q + 1⟩

7 else
8 P .append (⟨Rд, 1⟩)

9 i = 1

10 while (not (R .empty())) do
11 Pi = P, Rsi = ϕ
12 while ( |Pi | > γ ) and (not (R .empty())) do
13 Ptemp = ϕ
14 rm = arg min

r ∈R
( |Pi |)

15 if not(predecessors(rm ).executed ()) then
16 execute(predecessors(rm ))

17 for ⟨Rд, qj ⟩ ∈ Pi do
18 R′д ← apply rule rm on Rд
19 if ⟨R′д, qk ⟩ ∈ Ptemp then
20 Ptemp (⟨R′д, qk ⟩) = ⟨R

′
д, qk + qj ⟩

21 else
22 Ptemp .append (⟨R′д, qj ⟩)

23 R .r emove(rm )
24 Rsi .append (rm )
25 Pi = Ptemp

26 increment (i)

27 [P, k ] = дet_best_ptrns_l ist {Pj , j = 1, . . . , i }
28 return [P, Rsk ]

by constructing the initial set of patterns by replacing each char-

acter in the attribute values by its corresponding atomic classes

from Table 2 (lines 2-8). The algorithm then performs pattern ag-

gregation (lines 10-27) by applying the rules in Table 3 in a way

that minimizes the set of discovered patterns. After generating

the minimal set of patterns Pi (i.e., |Pi | < γ ) using the sequence

of rules Rsi , we iterate over the other rules to generate another

minimal set of patterns. Each time, we iterate over the set of rules

that have not been applied yet. If the rule that will be applied in

the current iteration needs other rules to be first executed (based

on the dependency graph in Figure 3), we apply these rules (even

if they have been removed from R in a previous outer iteration)

before applying the current selected rule. Upon termination, the

algorithm checks and returns the set of patterns that contains the

smallest number of patterns with a score value close to 1.

Figure 4 represents a simple example of applying the syntactic

patterns discovery output to find non-conforming data patterns.

After constructing multiple sets of patterns and selecting the set of

Data

Office Location

S15−2538

E12−243

E4−3874

E11−234A

S15−2649B

9−2651

3−347

−468

Date

01/01/2004

· · ·

30/06/2005

01 − 04 − 1999

· · ·

02 − 03 − 2004

?

2008

L1 Patterns

Office Location

ud2 − d4

ud2 − d3

ud − d4

ud2 − d3u

ud2 − d4u

d − d4

d − d3

−d3

Date

d2/d2/d4

d2 − d2 − d4

p

d4

L2 Patterns

Office Location

ud+ − d+

ud+ − d+u+

d+ − d+

−d+

(r1)

Figure 4: Sample syntactical pattern discovery.

patterns that best describes the values in the attribute, we need to

generate the pattern that corresponds to each value inD by applying

the same set of rules that are used to construct the set of patterns.

The values that have patterns with a SynSc value greater than a

given threshold that is close to 1 are reported as DMV candidates.

The submodule дet_best_ptrns_list iterates over the discovered
lists of patterns. For each list, it sorts the patterns in descending

order based on the number of distinct value that can be represented

by that pattern. The patterns that represent less than 1% of the

distinct values of the attribute are considered syntactical outlier

patterns. The list with the minimum number of syntactical outlier

patterns is considered as the best pattern list for discovering the

DMVs.

3.2 Repeated Pattern Identification
A simple way to disguise missing values is to use strings that con-

tains repeated patterns. For example, by pushing the same key on

5
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a keyboard multiple times or entering the same sequence of char-

acters multiple times. The repeated pattern identification module

defines a similarity function between the consecutive characters

within a given string. For each attribute, the set of distinct values

D are processed by this module which would return a list L of

pairs < value, score >. The score takes values in the interval [0, 1].

A small score value means that the string does not have repeated

patterns whereas a large value means that the string contains many

repeated patterns.

Our target is not to just find the repeated substrings but to define

a scoring function that generates higher scores for longer values

with subtrings that are repeated more frequently. For that reason,

we define the function the scoring function rep(S) in terms of the

number of occurrences of the repeated substring in S , the length of

the substring, the length of S , and the length of the longest string

in the attribute that S belongs to. LetM be the length of the longest

string in attribute A. Given an attribute A, we define rep(S) for
S ∈ A as

rep(S) =
|s | ∗ t

|S |
∗
|s | ∗ t

|M |
(1)

where M is the longest value in A, s the substring that appears

repeatedly in S , and t is the number of times that s was repeated.
The first term in Equation (1) determines the ratio of the occurrences

of the repeated substring to the length of the string whereas the

second term gives higher score values for long strings that contain

repeated substrings. Short strings that include repeated substrings

are likely to exist in real data unlike long strings. Thus, we need to

consider the minimum length of the string S that should be tested

to reduce the number of false positives. The process of detecting

DMVs, based on repeated pattern, is then to takes the values that

have a score close to 1.

4 DMVS AS NUMERICAL OUTLIERS
As we mentioned earlier, there are cases where the missing values

are replaced by out of range values, which can be seen as outliers.

In the Pima Indians Diabetes data set [21], many values in the at-

tribute diastolic blood pressure were replaced by 0. In the adult data

set [21], many of the missing values in the "capital-gain" attribute

are replaced by 99999. Both of these can be seen as outliers (see

Figures 2(a, b)). Outlier detection is a well studied problem and

many methods have been developed. However, selecting a robust

outlier detection method that requires minimal user interaction is

still a challenging problem. Moreover, existing outlier detection

techniques detect outliers that are not necessarily DMVs.

Detecting DMVs that appear as outliers raises the following

challenges: (1) the values that are used to replace the missing values

are used frequently, which could mislead many outlier detection

tools; (2) the set of DMVs does not equal the set of outliers, i.e., there
are many outliers that are not DMVs and vice versa; and (3) different

outlier detection methods detect different sets of outliers [13].

Outlier Detection for DMVs. We implemented a modified ver-

sion of the outlier detector proposed in [29]. Detecting outliers

using probability density functions has been shown to outperform

other popular outlier detection methods in terms of time efficiency

and detection effectiveness [19, 29]. The simplicity of parameters’

setting for this method is another advantage. According to [29],

-40 -20 0 20 40 60 80 100 120 140 160
0
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Only distinct

Remove value under test

Figure 5: The effect of the included data in the PDF estima-
tion on correctly detecting the outliers.

Algorithm 2: Density-BasedOutlierDetection
Input: D: set of distinct values in attribute A,
Df : distinct frequent values in A

Output: Of : set of values that represent outliers

1 begin
2 Of = ϕ
3 h = compute_bandwidth(D, K )
4 τ , fmax = compute_threshold (h, D, K )
5 for x in Df do
6 X = D/{x }
7 h0 = compute_bandwidth(X , K )
8 for i ∈ {0, . . . , 4} do
9 h = h0 − (i ∗ 0.2 ∗ h0)

10 fi (x ) = 1

|X |h
∑
xi ∈X nxiK

(
x−xi
h

)
11 дi (x ) =

fmax −fi (x )
fmax

12 дm (x ) = max{дi (x ), i = 1, . . . , 4}

13 if дm (x ) > τ then
14 Of .append(x , дm (x ))

15 return Of

outliers fall in areas with low density. A good probability density

function (PDF) estimator could reveal very useful information about

the data distribution of a given attribute which could then be uti-

lized to detect outliers that represent DMVs. Values with small PDF

values are candidates outliers. However, the DMVs are usually used

frequently, which increase their PDF values as shown in Figure 5

(the blue curve). Thus, conventional outlier detector will be unable

to report such values as outliers.

A possible solution for the above problem is to ignore the repeti-

tion of the values within the data set. That means, estimating the

PDF using the distinct values only (red curve in Figure 5). However,

this solution is impractical since it hides important information

about the data distribution. For that reason, we propose to ignore

the duplicates from the data set before applying the outlierness

6



FAHES: A Robust Disguised Missing Values Detector KDD ’18, August 19–23, 2018, London, United Kingdom

test only for the value under test but not for the other values. The

estimated PDF curve is not smooth as shown in the black curve

of Figure 5. However, the estimated density shows clearly that the

value 0 is an outlier which was not detectable when estimating the

density function using the full data set or the set of unique values.

Algorithm 2 presents our method for detecting the outliers that

represent DMVs. For each numerical attribute, we remove the value

that we estimate the PDF for, and extract the set X of values that

are different from that value (line 6). The bandwidth value h (also

called the smoothing parameter of the PDF) is computed based

on the data set X and the kernel function K (line 7). This value

controls the smoothness of the PDF curve. Large h values over-

smooth the PDF curve and hide a lot of useful information whereas

small h values increase the fluctuation of the PDF curve and show

misleading behavior of the density function in many cases. In this

paper, we use the popular Gaussian kernel, which is defined as

followsK(x) = 1

2π e
−

(
x−µ̂
2σ̂ 2

)
, where µ̂, σ̂ are the sample mean and the

sample standard deviation, respectively. For setting the bandwidth

h, we use the normal rule h = 1.06σ̂n−
1

5 , where σ̂ is the sample

mean and n is the number of samples. This bandwidth value works

very well when the data follows a normal distribution. However,

it over-smooths the PDF curve in the case of multimodal density

functions, which will make many outliers undetectable. Let h0

be the bandwidth value computed using the normal rule, we use

multiple h values (h ∈ {h0 − (i ∗ 0.2 ∗h0), i = 0, . . . , 4}) to estimate

the PDF at any value of the frequent values in each attribute. It

has been shown in [10] that using h < 0.2 ∗ h0 undersmoothes the

density function curve significantly and gives incorrect estimation

of the PDF. The PDF at the value x is then computed in line 10

where nxi represents the frequency of the value xi in the attribute

which is stored by the statistical profiler.

Let fi (x) be the PDF of the value x estimated using the band-

width hi = h0 −(i ∗ 0.2 ∗h0), i = 0, . . . , 4, дi (x) =
fmax−fi (x )

fmax
is the

score value based on the PDF and дm = max{дi , i = 0, . . . , 4}. The

value x is reported as a candidate DMV if its score дm is greater

than a given threshold τ . Qahtan et. al. in [29] proposed to esti-

mate the PDF at a set M = {m0,m1, . . . ,mq−1} of points that are

uniformly distributed within the range of the data to be used as an

approximation of the PDF curve. We compute

fmax = max

m∈M
f (m).

The threshold is set automatically using a technique similar to the

one in [29] by computing the average PDF values

¯f =

∑q−1

i=0
f (mi )

q
.

The threshold τ is chosen to be τ = 0.99
¯f , which is more restrictive

than the one used in [29]. This setting works well in our problem

as it reduces the number of false positives.

5 DMVS AS INLIERS
To better understand how to detect DMVs that not outliers (syntac-

tic or otherwise), we first discuss how to statistically model missing

data. This would then help us build a detector, RandomDMVD, for

DMVs that take valid values.

ID Position Salary $ ID Position Salary $
E1 Manager 3500 E1 Manager null

E2 Secretary 2200 E2 Secretary 2200

E3 Manager 3600 E3 Manager 3600

E4 Technician 2400 E4 Technician null

E5 Technician 2500 E5 Technician 2500

E6 Secretary 2000 E6 Secretary null

(a) (b)

ID Position Salary $ ID Position Salary $
E1 Manager 3500 E1 Manager 3500

E2 Secretary 2200 E2 Secretary null

E3 Manager 3600 E3 Manager 3600

E4 Technician null E4 Technician null

E5 Technician null E5 Technician 2500

E6 Secretary 2000 E6 Secretary null

(c) (d)

Table 4: The differentmodels for themissing data (a) the cor-
rect data (b)missing values followsMCARmodel (c)missing
values follows MARmodel (d) missing values follow NMAR
model.

5.1 Statistical Modeling of Missing Data
In general, missing data follows one of three models [4, 22]: missing-

completely-at-random (MCAR,) missing-at-random (MAR), or not-

missing-at-random (NMAR). In the MCAR model, the missing val-

ues are randomly distributed across all records. They do not depend

on the recorded values or on the missing values. An example is

shown in Table 4 (b). In the table, the probability that the salary

value is missing does not depend on the recorded or on the miss-

ing values [22]; we can see that: P(Salary = null | position =
Manaдer ) = P(Salary = null | position = Secretary) = P(Salary =
null | position = Technician) = P(Salary = null) = 0.5. In theMAR

model, the missing values are randomly distributed within one or

more sub-samples of the records. The fact that the data values are

missing depend only on the recorded values but not on the missing

values. In other words, the probability that a given attribute contains

MAR values could depend on any of the observed values [4, 22]. An

example of MAR values is shown in Table 4 (c); the salary values

are missing when the position takes the value "Technician" is miss-

ing, i.e., P(Salary = null | position = Technician) = 1 whereas

P(Salary = null | position = Manaдer ) = 0 and P(Salary =
null | position = Secretary) = 0. In the NMAR model, the miss-

ing data depends on the missing values themselves. An example

is shown in Table 4 (d); P(Salary = null | Salary < 2500) = 1

whereas P(Salary = null | Salary ≥ 2500) = 0. Detecting DMVs

that follow the NMAR model is hard to impossible.

5.2 RandomDMVD
Detecting missing values that are disguised using valid values is

clearly hard. Under the MCAR or MAR models, detecting the val-

ues that replace the missing values and used frequently could be

achieved by removing one of the frequent values in a given attribute

and testing if the resulting missing cells follow either models. If the

resulting empty cells follow either models then that value is likely

7
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to be a DMV. This process could be repeated over the most frequent

values in each attribute and the values that satisfy the MCAR/MAR

assumption are reported as DMV candidates. This technique has

been studied in [14, 15]. In the following, we describe a new ap-

proach for detecting such DMVs that leverages some of the concepts

from [14].

For detecting the DMVs that follow MCAR/MAR models, we

assume that a value v in attribute Ai is a DMV if T̃Ai=v contains

a subset that represents a good sampling of the original T̃ , where
T̃Ai=v = σTAi =v . We compare the data distribution of T̃Ai=v and T̃

to generate a score for each frequent value and sort the values based

on their scores. Values that have scores close to 1 are considered

DMVs. We use the mutual information between the distribution in

T̃Ai=v and T̃ as a metric for comparing the data distribution. The

mutual information is shown to be a good metric to discover if

T̃Ai=v contains a subsetTs that represents a good sampling of T̃ [8].

Let vvv = (v1, . . . ,vs ) be a tuple, the mutual information between

the values v1, . . . ,vs in a given table τ is computed as:

Iτ (v1,v2, . . . ,vs ) = log

Pτ (v1,v2, . . . ,vs )∏s
i=1

Pτ (vi )
, (2)

where Pτ (v1,v2, . . . ,vs ) is the ratio between the number of tuples

that contains the values v1,v2, . . . ,vs in τ and the size of τ . The
function Iτ takes values in the interval (−∞,∞). If the subtable

T̃Ai=v represents a good sampling of the table T̃ then the average

mutual information of the values in T̃Ai=v will be close to the

average mutual information of the values in T̃ . After computing

the mutual information between the values that belongs to T̃Ai=v
with respect to T̃Ai=v and T̃ , we define a normalized score value

that measures how good the sample T̃Ai=v is w.r.t. T̃ as follows:

S =
1

|vvv ∈ T̃Ai=v |

∑
vvv ∈T̃Ai =v

1

1 + |IT̃ (vvv) − IT̃Ai =v
(vvv)|
. (3)

The score S takes values in the interval [0, 1] with values close to 1

when the subtable T̃Ai=v represents a good sampling of the table

T̃ , which indicates that the value v is highly likely a DMV.

Note that the subspace in which the subset of T̃Ai=v represents

a good sample of T̃ is unknown, thus requiring the examination

of all possible subspaces. However, this process would be costly in

terms of time complexity as it requires exponential time complexity

with respect to the number of attributes. To tackle this issue, we

propose the two following approaches.

In the first approach, we use the ratio between the number of

distinct values to the number of tuples in each attribute as an

indicator for the attribute to be included in the score computation

process. For attribute Ai , let ρAi , ρ
′
Ai

be the ratios between the

distinct values and the number of tuples in table T̃ and in subtable

T̃Ai=v , respectively. An attributeAj will help in discovering if T̃Ai=v

contains a good sample of T̃ if Γj =
ρ′Aj
ρAj

is close to 1. In our search

for the best subspace, we sort the attributes using the distance

between their Γ value and 1, select the first two attributes and

compute the DMV score S . We add more attributes and recompute

the DMV score S until including all the attributes and we select the

maximum score value as recommended by [2].

In the second approach, we simply use a multilevel index of the

data. Since computing Pτ (v1,v2, . . . ,vs ) will be done frequently,
the multilevel table index helps in reducing the running time sig-

nificantly. The index contains the set of distinct values together

with the subtable that is produced by selecting the records that

include the value in the original table. This index has a linear space

complexity with respect to the number of attributes in each table.

However, it reduces the running time of RandomDMVD signifi-

cantly, as shown in our experiments.

6 EVALUATION
To evaluate FAHES, we compare its detection effectiveness, in terms

of of precision and recall, with two baseline methods. The first is

DiMaC [14, 15], which is designed to detect the DMVs that follow

the MCAR/MAR models. DiMaC reports a value v in attribute A as

DMV if σTA=v contains an embedded unbiased sample (EUS) of the

table T . The correlation between the values in σTA=v and T is used

to measure the goodness of the sample. The second is dBoost [27],
which can detect both numerical and syntactic outliers. dBoost

applies a set of transformations to the data in each attribute to find

a set of rules that describe the bulk of the data in that attribute.

Values that do not conform with the found set of rules are flagged

as outliers.

We also tested the local outlier factor (LOF) [6] and the local out-

lier correlation integral (LOCI) [25], which are two popular outlier

detection methods. However, due to their poor results, since they

are not designed to detect DMVs, and because of space limitation,

we omit their results in this evaluation.

In this evaluation, we used 32 data sets from public and private

data repositories. The variations in the data sources used in the

evaluation reflect the generality of our solution for detecting the

DMVs. We manually annotated the DMVs in each data set.

UCI-ML repository: It includes around 399 data sets which are

mainly used by the ML community. We used 4 tables from this

repository. The average table size is 53047 tuples and 11 attributes.

data.gov: It contains more than 200k open data sets from different

US government agencies on domains such as education, finance,

environment and health care.We used 10 tables from this repository.

The average table size is 3825 tuples and 13 attributes.

data.gov.uk: It is the UK counterpart of the previous repository

with over 30k data sets. We used 3 tables from this repository. The

average table size is 194696 tuples and 23 attributes.

mass.gov: Mass.gov is a website that provides access to open data

in the state Massachusetts. We used 6 tables from this repository.

The average table size is 43391 tuples and 22 attributes.

MIT DWH: The MIT data warehouse is a private repository that

includes 2,400 tables. We used 9 tables from this repository from

the subset of tables which are available to MIT researchers. The

average table size is 11760 tuples and 14 attributes.

6.1 Detection Effectiveness
The detection effectiveness of the different methods is measured in

terms of

precision(P) =
#true DMVs detected

#reported DMVs
8
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Source # Tables DiMaC dBoost FAHES (NE) FAHES Syntactical Numerical Random
Outliers DMVs Outliers DMVs DMVs

P R P R P R P R P R P R P R
UCI ML-Repo. 4 0.17 0.333 0.004 0.286 0.327 0.857 0.384 0.952 0.528 0.905 0.833 0.238 0.375 0.429

data.gov 10 0.242 0.644 0.038 0.356 0.321 0.911 0.484 0.978 0.620 0.978 0.667 0.0444 0.596 0.689

data.gov.uk 3 0.075 0.217 0.005 0.652 0.222 0.870 0.385 0.870 0.667 0.870 0.750 0.130 0.192 0.217

MIT DWH 9 0.045 0.214 0.0005 0.077 0.135 0.571 0.371 0.929 0.500 0.714 0.800 0.286 0.188 0.214

mass.gov 6 0.235 0.388 0.003 0.2 0.333 0.575 0.522 0.725 0.633 0.475 0.500 0.038 0.532 0.413

Table 5: The detection quality of the evaluated methods when applied to detect the DMVs on different data sets.

and

recall(R) =
#true DMVs detected

total number o f DMVs
.

The number of DMVs is the number of distinct values that are used

to disguise themissing values (we ignore the frequency of the values

when counting the DMVs). We performed several experiments to

show the ability of FAHES to detect the different types of DMVs.

We summarize all the results in Table 5.

The first experiment compares the precision and recall of FAHES

with the two baseline methods, namely DiMaC and dBoost. DiMaC

outperforms dBoost in all of the data sets except for those in data.

gov.uk since most of the DMVs in the latter are syntactic outliers

which are easily detectable by dBoost. Since dBoost is designed to

detect outliers, it reported many outliers that are not DMVs. FAHES

outperforms both methods in terms of precision and recall for all

data sets. This experiment shows that detecting DMVs requires

special handling where out-of-the-shelf solutions would perform

poorly.

The second experiment breaks down the different components of

FAHES to show how each component behaves. While the numeric

outlier detection module has better precision, its recall is the lowest

as it is restricted only to numerical attributes. Many of the DMVs we

encountered in our data sets are categorical. The syntactic outlier

detector has the best recall and a good precision compared with the

other modules in FAHES. However, for data sets from mass.gov, its

recall is not that good. RandomDMVD shows better effectiveness

than DiMaC which detects the same type of DMVs. The better

effectiveness is due to the better subspace selection and the score

combination function where we use the maximum instead of the

average used by DiMaC. This experiment shows clearly that the

three modules of FAHES are important to have a robust system for

detecting DMVs.

The third experiment shows the importance of applying ensem-

ble technique in improving the system’s quality. In this experiment,

we run FAHES with the best parameter setting without DMVs en-

sembles (FAHES (NE) in Table 5) for each repository and compare

the results with those obtained using FAHES with DMVs ensem-

bles. The results clearly shows that FAHES with DMVs ensembles

outperforms FAHES (NE) since the best parameter setting works

fine for some data sets within each repository but not for all data

sets. Overall, it is important to note that since the number of DMVs

to be validated is small, it is important to achieve high recall at the

expense of precision.

Data set Rows Columns DiMaC dBoost FAHES
Pima Ind. Dia. 768 8 213 1.29 0.039

Adult {UCI} 32561 15 (+1) h 102 11.070

DOE H. School Perf. 437 18 694 2.77 0.297

SFO Museum Exhib. 1242 16 (+1) h 4.77 0.767

Avg. Daily Traf. Counts 1279 9 42.3 2.22 0.197

Website Analytics 3366 10 (+1) h 5.53 0.638

Employee Directory 15946 21 (+1) h 87 10.5

Accidents 2015 140056 32 (+1) h 1958 431

Table 6: Running time (sec) for DiMaC, dBoost and FAHES
when detecting the DMVs on different repositories ((+1) h
means themethod tookmore than an hour to report DMVs).

6.2 Detection Efficiency
Another important factor of the usability of a given method in

detecting DMVs is its running time. In this experiment, we show the

running time incurred by the evaluatedmethods when detecting the

DMVs on specific data sets. DiMaC has quadratic time complexity

w.r.t. the number of attributes. It has quadratic time w.r.t. number

of tuples in the worst case analysis. Its running time also depends

on the number of distinct values in each attributes. The running

time in FAHES is dominated by the RandomDMVD module. It has

linear time complexity w.r.t. number of attributes and O(N logN )
w.r.t. number of tuples due to the multilevel index, which speeds

up the calculation of the score in Eq.(3).

Table 6 shows the running time in seconds for the three evaluated

methods. Each experiment is run for a maximum of one hour and

report “(+1) h” if the method does not report the results in less

than an hour. The running time depends on the number of tuples,

attributes and frequent values. From the results, we can see that

FAHES is three and more orders of magnitude faster than DiMaC

depending on the size of the table. The running time of dBoost is

also 5-33 times larger than the running time of FAHES.

7 RELATEDWORK.
We categorize the related work as follows.

Disguised missing values. The DMVs problem was first introduced

in [26]. A specific type of DMVs that follows missing-at-random

(MAR) model was studied in [14, 15]. We leverage this model for

our detection module for inlier DMVs but we outperform it both in

terms of efficiency and effectiveness.

Outlier Detection. The literature abounds with outlier detection

methods which differ in their view of what outliers are and the

9
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way to find them. Statistical-based approaches assume the data is

extracted from a given distribution with unknown parameters and

proceed to find the missing parameters. Data points that do not fit

in the statistical model are reported as outliers. For example, in a

normal distribution, a data point p is reported as an outlier if it de-

viates more than 3σ from the mean µ [11]. A distance-based outlier

detection method was proposed in [17]. In this method, an object

p in a data set D is a DB(π ,dmin )-outlier if at least percentage π
of the objects in D lies within a distance greater than dmin from

p. Many variants of the distance-based outlier detection method

have been proposed as well, e.g., [5, 31]. The main problem in this

approach is that it requires prior knowledge about the data applica-

tion in order to efficiently set the parameters (π ,dmin ). The high

computational time is also another problem with this approach.

Another popular set of approaches is density-based, where a given

data point is reported as outlier if the density in its neighborhood

is too different from the densities around its neighbors. Local Out-

lier Factor [6] and Local Correlation Integrals [25] are examples

of density-based outlier detection techniques. Outlier detection

using probability density functions has been shown to outperform

other popular outlier detection methods in terms of time efficiency

and detection effectiveness [19, 29]. The simplicity of parameters’

setting for this method is another advantage. The numerical outlier

methods proposed in this paper use a modified version of the work

in [29].

General error detection. As pointed out by [1], real-world data is

dirty, there are many different types of data errors, and more im-

portantly, existing tools are not robust enough to capture most

errors in real-world datasets. Even with the recent advancements

of general-purpose data cleaning tools [9, 16], robustly detecting

data errors is still a long-standing research problem. FAHES made

a firm step for detecting DMVs, which can be easily deployed by

existing data cleaning tools.

8 CONCLUSION AND FUTUREWORK
We presented FAHES, an end-to-end system to detect DMVs from

two different angles: DMVs as detectable outliers and as detectable

inliers. For the former case, we proposed a syntactic outlier de-

tection module for categorical data, and a density-based outlier

detection module for numerical values. For the latter case, we pro-

posed a method for detecting DMVs that follow either MCAR/MAR

models. We also applied an ensemble method to strengthen the

results delivered by these different modules. Our extensive experi-

ments using real-world data sets show that FAHES deliver results

that are way better than existing solutions in detecting DMVs.

One futureworkwe are planning to perform is to improve FAHES

to detect the DMVs that are generated randomly within the range

of the data. For example, when a child tries to create an account on

a domain that has a minimum age restriction, the child fake his age

with a random value that allows him to create the account. Such

random fake values are hard, if not impossible, to detect. Moreover,

although DMVs are the focus of this paper, there are more types of

errors are found in the wild. Many of the principles and techniques

we have used to detect DMVs can be leveraged to detect other types

of errors, so a natural next step is to extend the infrastructure we

have built to detect those. This opens new challenges related to the

robust identification of errors that could be interpreted differently

by different modules.
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