
Leva: Boosting Machine Learning Performance with Relational
Embedding Data Augmentation

Zixuan Zhao
The University of Chicago

Chicago, USA
zhaozixuan@uchicago.edu

Raul Castro Fernandez
The University of Chicago

Chicago, USA
raulcf@uchicago.edu

ABSTRACT

In this paper, we present Leva, an end-to-end system that boosts
the performance of machine learning tasks over relational data.
Leva builds a relational embedding by representing relational data
as a graph and then using embedding methods to represent the
graph as vectors. The embedding represents information from the
entire database, including useful information for the downstream
machine learning task. At the same time, some information in the
graph will be erroneous, for example, corresponding to incorrect
inclusion dependencies. However, we show that the supervision
signal from the downstream task filters out information that is not
useful. The result is a boost in ML performance. This result means
that it is possible for analysts to avoid the time-consuming effort of
collecting features across multiple relations—which requires solv-
ing a data discovery and integration problem—and instead rely on
these techniques to train better-performing models. We demon-
strate Leva’s performance on different classification and regression
datasets and compare it with multiple other baselines.

CCS CONCEPTS

• Information systems→ Data management systems; Media-
tors and data integration.

KEYWORDS

data discovery; feature engineering; training data augmentation
ACM Reference Format:

Zixuan Zhao and Raul Castro Fernandez. 2022. Leva: Boosting Machine
Learning Performance with Relational Embedding Data Augmentation. In
Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/XXXXXX.YYYYYY

1 INTRODUCTION

There is an explosion of interest in applying machine learning in
organizations that is slowed down by “data preparation work” [36].
The training datasets used to fit machine learning models consist
of features and a target variable. The features are often stored as at-
tributes in tables that may be sprinkled throughout the organization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN XXXXX.YYYYY.ZZZZZ. . . $15.00
https://doi.org/10.1145/XXXXXX.YYYYYY

Performance
High

High

Full Table Method

Human
Effort

Base Table Method

Low

Low

Join

Full Table

Base Table

Table 3
PK
FK1

Table 2
PK

FK1

Table 1

Machine
Learning

Algorithm

Full Table Method

Base Table
PK Attribute1 Attribute2 Machine

Learning
Algorithm

Low

Table 3
PK

FK1
Attribute

Embedding Method

Table 2
PK

FK1
Attribute

Table 1
PK

FK1
Attribute

Base Table

Machine
Learning

Algorithm

Leva
Join

Base Table Method

Figure 1: Performance and Effort Tradeoff During the cre-

ation of a Training Dataset

To build a training dataset, an analyst must solve three problems:
feature engineering, discovery, and integration. First, the analyst
must determine what features are relevant for the problem at hand.
Then they need to identify what tables and databases among the
many available in modern organizations contain those features.
Finally, they need to combine those tables into a single one, which
corresponds to the desired training dataset. The discovery prob-
lem is challenging because of the volume of tables and the lack of
guidance to choosing the right features. The integration problem is
challenging because of the lack of keys and join paths that indicate
how to correctly combine tables. Although join information is of-
ten available within individual databases, it does not exist across
databases. Despite the difficulty, analysts are pressed to address
these problems because identifying the right features is crucial to
achieving good quality on the downstream machine learning task.
Today, analysts are forced to make an uncomfortable decision:
• Base Table. Analysts could stick to the table that contains the
target variable—called Base Table—to train the ML model. Unfortu-
nately, this means they may leave behind many features that would
boost the performance of the model.
• Full Table. Alternatively, the analyst could aim to join the Base
Table with as many tables as possible, hoping the relevant features
are included in the final result. The search could be more guided
if the analyst knew what features are relevant to the problem, but
this information is often not available a priori. Unfortunately, this
Full Table approach requires identifying what tables are joinable
and how to join them, which is time-consuming.
• Full Table + Feature Engineering. To improve on the previous
option, the analyst could run a feature engineering algorithm on
the Full Table, using compute time to detect features that will be
most helpful for the ML task.

https://doi.org/10.1145/XXXXXX.YYYYYY
https://doi.org/10.1145/XXXXXX.YYYYYY

Base Table does not require addressing the discovery and inte-
gration problem, but it potentially yields low performance (bottom-
right quadrant in Fig. 1). Full Table may achieve much higher per-
formance but at the great cost of time spent in identifying what
tables may be helpful and how to combine them: an effort that has
to be repeated for every new ML task. Consequently, Full Table sits
on the upper-left quadrant of Fig. 1. In summary, either analysts
invest time and resources in joining multiple tables with the goal of
improving downstream machine learning tasks—assuming the risk
of not achieving so—or they settle for a simpler training dataset
that will lead to worse performance of the ML task but is less time-
consuming. Both options reduce the potential value of machine
learning within organizations.

This undesirable tradeoff has spun interesting research contribu-
tions that include dataset augmentation for AutoML pipelines [15],
principled approaches to determine when joining two datasets is
profitable for the target task [27], and many others [38]. These
approaches assist with a process that remains otherwise manual,
or as a boost to fully automated AutoML pipelines. However, these
state-of-the-art approaches assume knowledge of the correct way
to join tables. We target a more general scenario, where we do not
know table keys and we do not know join paths. Our goal is to provide
an approach that does not require effort from users to discover and
integrate data and that achieves high quality on downstream tasks;
we want a method that sits in the top-right quadrant in Fig. 1.

In this paper, we introduce Leva, a system to construct a rela-
tional embedding that represents elements of the relational data as
vectors. The embedding is used to featurize the Base Table. Because
each vector in the embedding is a distributed representation over
all tokens in the database, useful information from other tables is
included in the featurized training dataset and that boosts the per-
formance of the downstream ML task. Crucially, the performance
achieved with the embedding closely resembles the performance
of manually engineered datasets, removing the awkward tradeoff
of choosing between convenience and performance.

The main contribution of Leva is the strategy employed to re-
construct join information across tables without prior knowledge of
table keys or other schema information. Leva constructs a graph
that represents the relational information, including approximate in-
clusion dependencies—some of which may be unavoidably wrong—
and then embeds that graph into a high-dimensional embedding.
Despite the existence of wrong inclusion dependencies, the embed-
ding boosts the performance of downstreammachine learning tasks.
This is because the supervision signal from the downstreamML task
removes edges that do not bring useful information, including spu-
rious inclusion dependencies. Then, by bringing information from
other tables into the Base Table and using the supervision signal
to adapt the embedding at training time, the relational embedding
we present in this paper boosts the performance of downstream
machine learning tasks without user intervention.

We evaluate Leva on common classification and regression tasks
using multiple real and synthetic datasets. We show that the em-
bedding representation outperforms the Base Table method and
matches the performance of Full Table + Feature Engineering de-
spite minimal human input. We show that Leva scales to much
larger datasets than previous embedding methods. We complement

Table Name Attributes
Expenses Name, Gender, School Name, Total Expenses

Order Info Name (FK, ref Expenses),
Item (FK, ref Price Info)

Price Info Item, Prices
Table 1: Schemas for Synthetic Dataset: STUDENT

the evaluation results with a study of the effects of different em-
bedding methods, which we believe will contribute to this growing
area in data management, and we include ablation experiments that
explore various design decisions we make.

In summary, the contributions of this paper are:
• Relational embeddings specifically constructed to boost the per-
formance of downstream ML models.
• An end-to-end system, Leva, that takes as input a list of tables
and produces a ready-to-use relational embedding.
• An analysis of the hypothesis that explains why the relational
embedding works in downstream tasks. We believe our insights
will be useful to build upon these methods, which have applications
in other areas of relational data management.

The paper outline is as follows. Section 2 presents the back-
ground and the problem statement. Section 3 explains the core
graph construction logic of converting relational data into graphs.
Section 4 covers how the graph construction module lies in the
whole pipeline of Leva. Section 5 justifies why the embedding
works. We present evaluation results in Section 6, related work in
Section 7 and conclusions in Section 8.

2 BACKGROUND AND PROBLEM SETTING

In Sections 2.1 and 2.2, we discuss current approaches to assemble
training datasets for machine learning problems over relational
data. We review the embedding literature in Section 2.3. We finish
the section with a problem statement in Section 2.4.

2.1 Choosing a Training Dataset

A supervised machine learning task, such as classification and
regression, learns functions that match input-output pairs based
on its training data. Formally, it requires data to be the form (X ,Y)
where X represents the set of available features, and Y is the target
for the prediction tasks. The goal is to find a model that minimizes
both the error on the training dataset and the empirical error on
previously unseen data X

′

, which is often referred to as the test
set. In the relational data scenario, both X and Y come from table
attributes. However, since real-world data is often scattered over
multiple tables and databases, it requires extensive human effort to
identify good attributes and to join them to form the input X .

Consider a STUDENT dataset with three tables (schema and
attributes listed in Table 1). The underlined attributes correspond
to the keys of each table, and in parentheses are the foreign keys
that some attributes are referring to. Consider an ML task where
the goal is to predict the value of Total Expenses (in table Expenses).
For illustration purposes, we assume that Total Expenses is fully
explained by order information (in table Order Info) and it is uncor-
related with Gender and School Name. In this case, Total Expenses is
the response variable, Y . To train a model to predict Y , we need to
find a set of explanatory variables,X . One straightforward choice is

to use only attributes in table Expense, excludingY . We call the table
that contains the target attribute/feature, Y , the Base Table. Using
the Base Table as training data is effortless but the approach may
leave potential performance untapped because the attributes Gen-
der and School Name are not good predictors of the target variable.
This approach corresponds to the low effort but low performance
quadrant of Fig. 1. Instead, we wish to use all relevant information
across tables to boost the ML task’s performance.

2.2 Machine Learning over Relational Data

Another option is to assemble a training dataset by joining multiple
tables from different databases, aiming to bring in relevant features
for the downstream task. This is the Full Table approach. In this
scenario, an analyst needs to solve two problems: identify relevant
features and identify where they are stored. For example, in Table 1,
the attribute Prices from Order Info is relevant for predicting Total
Expenses. Second, the analyst must identify the way to join tables
with relevant features, e.g., find the KFK relations among the ta-
bles aforementioned. While this task is straightforward in a single
database where schema information (i.e., join paths) is available
to the user, it becomes more complex when either the number of
attributes or the number of tables increases. In either case, it is
increasingly complicated for users to understand where and how
useful features are stored and what the best practice is to assemble
a training dataset. In these scenarios, the burden of identifying and
executing joins falls upon the analysts [37].

Consequently, the Full Table approach falls in the top left quad-
rant of Fig. 1. We note that, if the resulting joined table has many
irrelevant features, there is an increased chance of overfitting the
downstream machine learning model and causing worse quality.
For that reason, analysts may apply a feature selection strategy
to filter out less relevant features. The resulting approach is Full
Table + Feature Engineering.
Related work. Because identifying joinable tables and executing
the join is a high-effort activity, much work has been done to assist
with these tasks. Kumar et al. [27] provide several rules to assist
users to determine which joins are profitable for a downstream task.
Data-driven rules such as tuple-ratio and risk-of-representation are
simple to understand and implement for users. ARDA [15] uses a
ranking method based on random injection to augment the Base
Table. Although these approaches ameliorate the data integration
problem, they still require the user to provide a set of valid joins,
whether manually, or via the use of data discovery systems like
Aurum [12], Lazo [13], LSHEnsemble [42], and Auctus [16] which
can help with identifying new datasets with their corresponding
join paths. In addition, these approaches require the users to han-
dle different join cardinalities, e.g., 1:N and N:M, to guarantee the
resulting table maintains a similar distribution of rows as the Base
Table. This task becomes harder with the increasing number of
tables and with the varied cardinality of the join relationships.

To summarize, even with the assistance from data discovery and
join discovery systems, assembling a full table is hard. We include
a discovery baseline in Section 6 to provide empirical evidence.
The goal. We want a keyless and pathless method of assembling
relational training data. We propose using a relational embedding

that featurizesX to boost the performance of the downstreammodel
without using human effort.

2.3 Embedding Relational Data

One key problem of machine learning is to find representations of
input data that incorporate structural information into the machine
learning model. Good representations usually come in the form
of real-valued vectors that preserve ideal structural information,
which depends on the problem of interest.
Text and Graph Embeddings. There are many approaches to
transform text and graphs as numerical vectors that can be used
as the input of downstream models. The vectors are trained to
preserve certain desirable properties of their original subject. In
language modeling, the intuition is simple: words that appear un-
der similar language contexts have embeddings that are close to
each other in the embedding space. Embedding training approaches
like Word2Vec [31], GloVE [32], BERT [17] extract contextual in-
formation and produce embeddings that are fed into downstream
models in place of original words. Similarly, in graph embedding,
vectors are trained to learn a mapping that embeds nodes in a vector
space such that geometric relationships of the embeddings reflect
structures of the original graph (e.g., degrees, clusterings) [23].
Relational Embeddings. Embedding has also been used in the
context of relational data. Bordawekar and Shmueli [7] constructed
word embeddings for tokens and enabled queries like semantics
matching, predict queries, etc. Termite [19] studied the approaches
of learning both structured and unstructured datasets in the same
embedding space. Lees et al. [29] developed an embedding-based
tool TURL forweb table understanding. EmbDI [11] andDeepER [18]
approach data integration tasks, such as schema matching and
record linkage, with relational embeddings.
An Opportunity. In this paper, we propose a graph construction
method that represents relational data. When embedded, the re-
sulting relational embedding is used to featurize the Base Table
and boost the performance of machine learning models (Section 3).
We then incorporate the relational embedding into an end-to-end
system, Leva, that helps solve the problem with minimal human
intervention (Section 4).

2.4 Problem Statement and Goal

Assume a Base Table, Tb with schema (X ,Y) and a database with
n tables D = {T1, · · · ,Tn }. X is a set of features in Base Table and
Y is the target variable, the goal is to find an embedding mapping
E : ti → ei , from tokens ti inD∪Tb to a multidimensional vector ei .
Here, tokens ti are defined symbolically: it could either be as a spe-
cific value, or an abstract token representing a set of relation rows,
columns, etc. This embedding presents analysts with an alternative
featurization strategy for the training dataset (i.e., an alternative to
one-hot encoding). We want to design a system, Leva, that builds
E with high scalability, and robustness to the existence of missing
and dirty data in the input relations.
Using the Embedding. With the embedding available, each to-
ken in Base Table is represented with the corresponding high-
dimensional vector in the embedding, and the resulting dataset is
used as the input to the ML task. Because ML models are built to

predict out-of-sample data, X ′, we assume the test data is not part
of the input to Levawhen the embeddings are calculated. Finally, at
inference time, seen test data is replaced with its embedding while
unseen data is either handled with binning quantization, or replaced
with one-hot encoding. More details on how data are transformed
are covered in Section 4.1.

3 RELATIONAL DATA AS GRAPHS

In this section, we explain how to represent relational data as a
graph to recover join information (i.e., inclusion dependencies). We
discuss how this graph construction process differs from others in
the literature in Section 3.3.
High-Level Insight. Leva represents relational data as a graph,
which is then embedded into a high-dimensional vector space. The
graph may include spurious information, such as inaccurate KFK
relationships, and consequently, the embedding will reflect this
faulty information as well. Despite that, the supervision signal
from the downstream task removes spurious edges and selects those
useful for the task at hand. Because the embedding incorporates
other useful information from the entire database into the Base
table, it boosts the downstream ML task performance.
Preliminaries. Assume a blackbox textification module that con-
verts a collection of input tables into a collection of string tokens. A
direct approach to produce an embedding is to train word embed-
dings directly over the collection of string tokens. This approach
loses information captured in the relational model. Recent research
has shown [11] that capturing the relational structure in a graph
yields better quality in downstream data integration tasks. We
propose a new graph construction process that produces an em-
bedding specifically constructed for boosting the performance of
downstream machine learning tasks.
Algorithm 1 Graph Construction and Refinement
1: INPUT: Dataset D
2: tableTexts← TEXITIFY(D)
3: edges = {}, # keys are value nodes, values are lists of row nodes
4: for row ∈ tableTexts do
5: for col ∈ table.columns do
6: token ← row[col]
7: Vote for value token with attribute col
8: edдes[token] ← row
9: end for

10: end for

11: attr ← Attributes with enough votes for each tokens
12: edдes ← REFINE(edдes,attr)
13: edдes ← ADD_WEIGHT(edдes)
14: RETURN edдes

Graph Construction Overview. The graph is constructed in two
stages: node and edge construction (Section 3.1), and refinement
step (Section 3.2).

3.1 Graph Construction With Value Nodes

We start with a simplified version of the graph construction process.
In the graph, nodes represent rows and edges between i and j are
created according to the following similarity metric:

Mi , j =

{
1 ∃ attributes attr1 and attr2, i .attr1 = j .attr2
0 otherwise

attr indicates an attribute (i.e., column of a table) and i.attr in-
dicates the value of that attribute on that row. Edges represent
relationships between rows of different tables, for example, they
may represent inclusion dependencies that establish the graph struc-
ture. Constructing the graph by computing the above metric for
all pairwise row nodes is inefficient. It yields O(MN 2) complexity
where N is the total number of rows andM is the total number of
attributes across all tables. Furthermore, it constructs a graph with
an overly complicated structure. For example, for a set of rows with
the same value under one attribute, the above algorithm creates a
complete subgraph, handling equivalence relationships indepen-
dent of each other. A larger number of edges makes deriving the
embedding harder in the downstream stage.

In short, we would like to build the graph efficiently and repre-
sent similarity metric with as few edges as possible. To achieve that,
we introduce a different type of graph node, NV , called value nodes
that help reduce the total number of edges (Line 4 - 10 in alg. 1). A
node from NV represents a specific value v and is only connected
to a row node r if r has v under one of its attributes. Thus, row
nodes that share values under the same attribute are connected
via a common value node representing the value. Even under the
same attribute, multiple value nodes are used to represent different
values that attribute can have. In most datasets, the number of
rows N is much greater than the number of attributesM and many
values appear multiple times in the dataset. The introduction of
the value nodes reduces the total number of edges from O(MN 2)
to O(MN). Furthermore, the embeddings for the value nodes also
preserve critical information about graph connectivity, correspond-
ing to inclusion dependency relationships, and they can be used as
additional features for downstream models. Lastly, the adjacency
matrix is more sparse, which enables fast approximation algorithms
which we will describe in Section 4.2. We only create value nodes
when values are shared between multiple rows. In summary, this
achieves a large reduction in the number of edges in exchange for
a few value nodes. The number of value nodes itself is small and
can be further reduced with techniques such as binning.

3.2 Graph Refinement: Voting and Weighting

Because the similarity metric that determines the creation of an
edge uses a purely syntactic criterion they represent inclusion de-
pendencies, but some edges do not reflect true KFK relationships
between the rows they connect. For example,Washington could ap-
pear under Name and State and creating edges because of this does
not contribute to the task of linking related records with each other.
There are two common cases where the similarity metric fails: miss-
ing values that share a representative token, and different words
sharing the same syntactic representation. For a particular value
node, we want to know if it represents an informative connection
and if so, with which row nodes. Since value nodes are inherently
defined by which attributes they correspond to, a natural variant of
the second question is to understand which set of attributes a value
node should belong to. We propose an attribute voting mechanism
that helps answer the two questions above (Line 11-12 in alg. 1).

Essentially, wewant to create an edge onlywhenwe have enough
evidence that the edge connects two attributeswith a real underlying
relationship. To quantify the amount of evidence we have for one
value to belong to a certain attribute, we allow rows to vote for
the attributes value nodes should fall under. When some row in
the database has value v under one of its attributes attr , we are
gaining evidence for the relationship between v and attr and give
out a vote for v being under attr . For a particular value node, the
more votes one attribute has, the more evidence a true relationship
between the value and the attribute exists. We use the distribution
of attributes to help make that decision.
Missing Values. As mentioned before, missing values exist in the
data with different representations so a simple static table lookup
does not suffice. Instead, we use the voting mechanism to help
detect missing values.

Missing values usually appear under multiple attributes while
common data usually only appears under a small subset of them.
We identify value nodes that received more than θranдe votes for
different attributes as missing data. The refinement stage removes
such value nodes and their connected edges. The θranдe is used as
a percentage of all attributes in the database and the default value
used in our system is θranдe = 50%. The parameter is set after em-
pirical observation. The intuition is that when tokens appear under
more than 50% of all attributes, they do not add much information
to the graph, embedding, and hence, to the final ML task.
WordsWith the Same SyntacticRepresentation. For each value
node, we only want to include edges induced by attributes for which
we have high evidence, i.e., number of votes. That is, the value-
attribute relations are witnessed at least some number of times in
the dataset. Otherwise, it is likely that the edges are created acci-
dentally (i.e., the “Washington” example). We rank all the potential
attribute names by the number of votes it receives and remove
attributes with votes under threshold θmin . θmin is presented as
a percentage of all the votes this value node receives and in our
implementation, θmin has a default value of 5%.
Graph Weighting. We want to annotate edges with weights that
indicate the degree to which the value-node relation contains use-
ful information (Line 13 in alg. 1). Value nodes that are shared
between a large number of row nodes are less likely to indicate use-
ful inclusion dependencies i.e., they do not likely represent a KFK
relationship. Conversely, value nodes that are only shared between
two row nodes likely convey information that is specific to two
row nodes. Leva assigns each row - value edge with a weight that
is inversely proportional to the number of edges the value node is
connected to. The weighting of the graph has other implications
too: it also balances the less-visited nodes by giving them more
weights during random walk generation—an effect that we will
discuss more in Section 4.2.2. However, weighted graphs might
create a high memory footprint as the random walk process relies
on alias tables to preprocess transition probabilities. The default
of Leva is to use weighted graphs unless the expected memory
exceeds the user’s resource limits.

3.3 Graph Construction Strategies

Graph representations of relational data are good for ML tasks
due to their ability to cluster similar rows across tables and to

express rows’ relationships with their attribute values. Previous
work on relational embeddings either directly embeds text [7, 29],
or constructs a graph as we do, but tailored to data integration
tasks [11]. We summarize the key differences in graph construction
between previous work and Leva.
• Value Nodes. Value nodes are used to describe relationships be-
tween rows and it greatly reduces the total number of nodes and
edges constructed. This not only reduces workloads for downstream
embedding training modules, but also directly generates represen-
tation for critical values, which can be used as an additional source
of input for downstream tasks. We show the positive effect in the
evaluation section.
• Edge Refinement and Weighting. The edge refinement and edge
weighting steps are crucial to embedding construction. Leva re-
fines the graph through node and edge removal and encodes more
important information through edge weighting. This prevents the
graph representation of relational data to be heavily concentrated
on information that is duplicated many times.
• Values As Strings. Graph construction stage handles heteroge-
neous relational data by viewing value tokens as strings. This relies
on the textification module introduced in Section 4 and extends
Leva’s ability to make predictions on unseen data.

4 LEVA OVERVIEW

In this section, we embed the graph construction module into the
complete pipeline of Leva. Leva’s architecture is presented in Fig. 2.
It consists of 5 stages: input and textification (Section 4.1), graph
construction, graph refinement, embedding construction (Sections 4.2
and 4.3), and embedding deployment in Section 4.4.

4.1 From Relation To Text

This stage prepares the input relations for the downstream pipeline
and has important performance implications. Columns in the in-
put relations are read in a streaming fashion. Leva classifies each
column into a set of types and applies a textification strategy:
Keys. Since key information is not always available in the schema,
Leva detects key columns under "keyless" scenarios with two simple
heuristics: i) the ratio between the number of unique values and
the total values in the column is close to one; ii) the attribute is
not a floating point number. For i) Leva seeks ratios close to 1 to
increase robustness to data errors, such as duplicates. When these
two heuristics are satisfied, the attribute is considered a Key. Keys
are encoded directly, as opposed to other numerical data, which we
bin to reduce the cardinality.
Numerical and Datetime Data. Numerical and datetime data’s
cardinality is often high. Unlike keys, encoding this data directly
would lead to large embeddings and low scalability. Worse, the
notion of numerical distance is lost when numbers are encoded
directly. To maintain numerical distance and scale to large datasets,
we quantize numerical data and encode the data’s distribution
via histograms. Histograms have a pre-defined number of bins.
We use both equi-width and equi-depth histograms based on the
data distribution. Concretely, Leva computes the kurtosis of the
numerical values and compares it with that of a normal distribution.
If the distribution of the data is heavy-tailed, the system chooses
equi-depth histograms to include outliers. Otherwise, the system

S

CITY_NAME .. SALARY

Row_1 NEW_YORK .. SALARY_10

Row_2 SEATTLE .. SALARY_9

Table 2

City Name .. Salary

New York .. 56,000

Seattle .. 47,000

Random Walk Matrix Factorization

NEW_YORK,

TABLE1_ROW_1,
SALARY_10,
ROW_10, ...

Text Embedding Models:
Word2Vec,

GloVe,
BERT, etc.

Matrix Factorization Models:
randomized SVD,

GraREP,
ProNE, etc.

1 0 0 1 ..
0 1 0 0 ..
0 0 0 0 ..
..

NEW_YORK

TABLE1_ROW1

CITY_NAME* Shaded: Value Nodes
Unshaded: Row Nodes

Textification
Graph Construction

and Refinement

Embedding Construction

Table 1

City Name .. Salary

New York .. 56,000

Seattle .. 47,000

Memory
Limited?

Table 1

CITY_NAME .. SALARY

Row_1 NEW_YORK .. SALARY_10

Row_2 SEATTLE .. SALARY_9

Table 1
City Name .. Salary
New York .. 56,000

..

Row Embeddings:

Value Embeddings:

NEW_YORK: [c1, c2, ...]
SALARY_10: [d1, d2, ...]

TABLE1_ROW1: [a1, a2, ...]
TABLE1_ROW2: [b1, b2, ...]

Deployment

Feature Embedding
a1 a2 ..
b1 b2 ..
..

Yes No

Machine
Learning

Algorithm

Training

Figure 2: Leva’s Architecture Overview

chooses equi-width histograms. Binning the numerical values not
only preserves numerical distances between tokens, but also greatly
reduces the number of textified tokens the system needs to handle
during graph construction. Both numerical and datetime data are
represented downstream, instead of with their original values, a
string concatenation of their attributes and their bin ID.
Missing Data. Without treatment, missing data will negatively
impact performance. Missing data has many representations such
as "?", "NULL", "N/A", NULL and others. Instead of doing exact
comparison with a static list of potential representations, we follow
a dynamic removal approach that is explained in Section 3.2.
String Data. String data should either be viewed as an atomic piece
of data, or as a formatted list of data (i.e., data separated by comma,
a string formatted list). Leva relies on an internal parser to check if
strings can be broken down into a list of elements. If not, we directly
encode the string as textifed output. Otherwise, we apply similar
textification strategies to each individual element and return the
list of textified elements as output.

After textification, the graph construction stage explained above
produces a graph as the input of the embedding construction.

4.2 Embedding Construction

The embedding construction component accepts different embed-
ding methods in a plug’n’play fashion so it can readily adopt newer
approaches as they appear. Nevertheless, we include two default
methods in Leva’s implementation: matrix factorization (MF) and
a random walk-based (RW) method.
Why Two Methods? One of the criteria we set to construct the
embedding is scalability. There are two compute resources we care
about: memory consumption and runtime. Matrix factorization

methods execute faster but the representation of the graph as an
adjacencymatrix has a higher memory footprint. On the other hand,
random walk based methods require a longer time to generate
random walks and embeddings. The exact tradeoff is based on
the computing resources available. In particular, Leva uses matrix
factorization when there is sufficient memory and falls back to the
random walk based method when there is not. To determine the
memory required ahead of choosing one embedding method or the
other, Leva analyzes the graph and uses the number of nodes to
estimate the memory consumption.
High-level intuition. Both embedding methods create node and
context embeddings to approximate the proximity matrixM .

Mi , j =

{
log(Pi , j) − log(τPD , j) (i, j) ∈ D

0 (i, j) < D

P(i, j) are edge weights assigned to edge i, j and the second term
measures negative sampling with sampling ratio τ [31]. MF learns
the node and context embeddings by factorizing the proximity ma-
trix, which defines closeness between nodes. RW relies on random
walks to estimate the closeness of nodes and treats preceding and
succeeding nodes as contexts for training.

4.2.1 Graph Factorization. Matrix factorization is inspired by di-
mensionality reduction methods and aims to generate embedding
such that the inner product between the learned embedding approx-
imates some proximity measure of the graph. Popular choices of
measure include adjacency matrix or probability transition matrix.

Algorithm 1 produces a sparse graph by using value nodes to
reduce the total number of edges created. This introduces the
possibility of using sparse matrix factorization methods, which
are both more compute-efficient and memory-efficient than dense

factorization methods. Traditionally, matrix factorization approxi-
mates the proximity matrixM with a Singular Value Decomposition
M ≈ UdΣdV

T
d where Σd are first-d singular values and Ud and Vd

are orthonormal matrices corresponding to the singular values. The
node embedding matrix is given by,

E = UdΣ
1/2
d

However, the computational complexity for SVD makes factor-
ization methods not applicable to larger graphs and therefore, larger
relational datasets. Halko et al. [22] proved that with a good theoret-
ical error bound, it is possible to approximate SVD results through
randomized algorithms in O(d2N) time where d is the target num-
ber of singular vectors inM . The algorithm relies on restricting the
matrix to a lower-dimensional subspace and computes factorization
in the reduced subspace. We construct an orthonormal basis Q of
the M’s range such that M ≈ QQTM . Then, we compute SVD on
the reduced matrixQTM = U ΣVT . The embedding is generated by
transforming the SVD back to the original space,

E = QU Σ1/2

In fact, we can replace the randomized SVD method above with
any state-of-the-art methods on matrix factorization. In recent
years, we have seen many approaches for matrix factorization that
exploit the parallelism available in modern hardware, as well as
new approximation algorithms [10, 21, 30, 35, 41]. In our evaluation
section, we present results from using the randomized SVDmethods
with spectral propagation techniques enhancement from [41].

4.2.2 RandomWalk Generation and Balancing. Matrix factorization
methods produce embeddings fast at the cost of a high memory
footprint. When there is not sufficient memory available in the
system, Leva uses a random walk based method that represents the
graph as an adjacency list instead of as a matrix.

The general pipeline of random walk methods is as follows. First,
a method is used to produce random walks on the graph, which
are represented in a textual format. Second, a language modeling
technique such as Word2Vec[31], BERT[17], etc. is applied to the
corpus, producing the final embedding. Note that, unlike applying
a language modeling technique directly to a textual representation
of the data, here it is applied to the output of the random walks
from the graph. Hence, the structure of the graph is preserved. Our
method is oblivious to the specific language technique used, and
we use Word2Vec in our implementation.
Balancing Random Walks. Unlike in text, some tokens in rela-
tional data appear only a few times. These tokens are visited less
often in the random walks and therefore, not represented well in
the embedding space. For word embeddings, the impact is small due
to the large amount of training data and the fact that some words
by nature appear less often than other words. However, in the con-
text of predicting downstream tasks, badly-represented nodes have
equal weights in the training data and if not represented well, they
could disrupt the training for downstream models. In the graph we
construct, since the value nodes are shared between more rows,
it is often the case that value nodes are visited more frequently.
In an effort to balance out the representation of tokens in the ran-
dom walks, we propose the following two solutions. One is to find
the less represented nodes, and force the system to restart walks
from those nodes more often. Another one is to set visit limits and

skip certain nodes when they are visited more times than the limit.
Since the most frequently visited nodes are mostly value nodes, we
equivalently force the random walks to directly walk on row nodes,
which in turn increases the representation of row nodes in the
walks that our system generates. We show in the evaluation section
that enabling balanced random walks improves the performance of
downstream tasks.

4.3 Embedding Method Analysis

Matrix factorization methods and random walk methods have time
complexity O(d2N) and O(N logN) respectively, where d is the
number of desired singular values and N is the number of nodes.
The theoretical complexities are only approximations to runtime.
In practice, the complexity of the embedding construction depends
heavily on the connectivity of the graph, which in turn depends on
the properties of the dataset. The choice of algorithm again depends
on the dataset and resources available to the user.

To optimize for runtime, we maintain the graph as small as possi-
ble. These include minimizing the number of edges by introducing
value nodes, minimizing the number of nodes by treating missing
data, and representing each row with only one node.

Lastly, we would like to comment more on the space complexity
of RW methods on both weighted and unweighted graphs. For a
graph with N nodes, weighted random walks use the alias method
that requires O(N logN) time preprocessing to achieve O(1) time
for drawing from distribution. Large alias tables pose challenges
not only to runtime but also to memory as well. The unweighted
version, on the other hand, requires less preprocessing and scales
better with large datasets and large graphs.

4.4 Embedding Deployment

We discuss a few important aspects of using the embeddings pro-
duced by Leva to featurize training datasets.
Dimensionality.Because the output embedding is high-dimensional
it may overfit downstream models that are not regularized [6]. This
means that a model that was appropriate before, can overfit if the
embedding is employed to featurize the base table. There are two
solutions to this problem: (1) reduce the embedding dimensionality
(2) apply regularization penalty to the downstream model. The sec-
ond is interesting because it may further improve the ML model’s
performance. We explore both options in the evaluation section.
Our observation is that as the number of unique tokens grows,
larger embedding dimensions are usually required. However, the
ideal dimension depends on the graph structure, which cannot be
known a priori and varies a lot from dataset to dataset.
Featurizing Training Dataset. There are two options to featurize
the base table. The first uses the embeddings for the rows only. The
second is to augment embeddings with value node embeddings,
which capture connectivity relationships between rows. Using the
second method has the potential of improving the downstream
performance by including more information in the featurization of
the Base Table. We explore both options in the evaluation section.
Hyperparameter Tuning. A goal of Leva is to reduce human
effort. Leva includes strategies to choose the configuration param-
eters. These are summarized in Table 2 with their default values.

Stage Parameter

Textification Bin Size (User, Default: 50),
Histogram Type (Default: Kurtosis)

Graph Construction
Graph Refinement

θranдe , θmin (Default: 50%, 5%)
Graph Weighting (Default: Yes)

Embedding
Construction

Embedding Size (User, Default: 100),
Specific Method Parameter(User)

Embedding
Deployment

Featurization Method
(Default: Row + Value)

Table 2: Leva Parameters Specification

5 EMBEDDING: WHY DOES IT WORK?

The relational embedding boosts the performance of downstream
machine learning tasks because when the relational embedding is
used to encode the Base table, it brings useful predictive informa-
tion from other tables. In this section, we look into this claim in
more detail. We do so by separating the claim into two hypotheses.
The first hypothesis is that whenever there is useful predictive
information available, this is represented in the embedding. For the
information to be represented in the embedding, it first has to be
represented in the graph. Hence, the first hypothesis says that the
graph represents useful relationships between the Base table and
other tables, including KFK relationships. The second hypothesis
is that non-predictive (spurious) information (including spurious
inclusion dependency relationships, which will also get represented
in the graph), is removed during the training process by using the
supervision signal from the downstream task and hence do not
harm the downstream performance. In this section, we analyze
these two hypotheses in detail.

Before presenting these two hypotheses in more detail, we re-
visit the problem statement of Section 2.4. Assume the response
variable is Y , Base Table is Tb , and the set of all attributes in
D = {T1, · · · ,Tn } ∪ Tb is Xall . For Y , assume we let X̃ to be a
set of features (their corresponding KFK relations to be joined with
Base Table) from D ∪Tb that are perfect predictors of Y . The two
hypotheses we make are:
• Embedding incorporates information from relations. Dur-
ing the graph construction stage, row nodes in D ∪ Tb that pass
the similarity metric used in Section 3.1 are connected in the graph.
This means that any information related to the Base table and
captured by the similarity metric (including inclusion dependency
relationships) will be represented in the graph by means of an edge
connecting the entities. During the embedding construction, nodes
that are connected via an edge will be represented closer to each
other. Therefore, when embeddings in Tb are used, they bring in
information from other tables with which they are connected via
an inclusion dependency relationship.
• Training selects predictive information from the embed-

ding. In addition to edges that represent related entities, some
edges will be spurious. We show that the supervision signal from
the downstream training process removes non-predictive infor-
mation. In other words, when the embedding is used for training,
it boosts the performance of the task because it brings informa-
tion from other tables: the positive information remains, while the
negative information is filtered out during the training process.

Dataset Name Genes Bio Financial
Method RW MF RW MF RW MF

Within Entities,
Percentile

50% 2.63 1.04 3.71 1.32 3.59 1.30
90% 3.46 1.48 4.79 2.20 6.42 2.13

Randomly,
Percentile

50% 3.76 1.35 4.09 1.40 4.29 1.34
90% 5.04 2.21 6.32 1.98 6.88 2.05

50% Distance,
Ratio 50% 0.69 0.77 0.90 0.94 0.83 0.97

Table 3: Percentile L1 Distances Between Node Embeddings

and Percentage Ratio of Medium Distance

5.1 Information Integration From Embeddings

For each row inTb , we can find a set of rows in D∪Tb that describe
a similar entity, where the similarity metric is defined in Section 3.1.
These rows are connected with an edge during graph construction.
Among the relationships between these rows, some incorporate
KFK relationships, which bring in attributes that describe the same
entity and therefore can be joined to augment Tb .

During Leva’s embedding construction, we create value nodes
only to serve as an intermediate step between two row nodes.
Thus, our constructed embedding directly approximates the simi-
larity metric defined between rows. If the embedding construction
method is able to represent rows close to each other in the em-
bedding space, they will bring in additional information for the
downstream task, even if we deploy only embeddings from Base
Table as feature inputs. We demonstrate this is exactly the case.

We set up the microbenchmark experiment to evaluate the clus-
tering effect1 with two control groups: 1)Within Entities Row nodes
that according to the ground truth should belong to the same en-
tity. 2) Randomly Row nodes that are randomly selected from the
total pool of row nodes. Within each group, we select 5 nodes and
compute the median of the pairwise L1 distance. Then, we generate
a distribution of such medium distance for 5000 entities. If the em-
bedding represents related nodes closer to each other the median
distance should be lower than with respect to unrelated nodes.

Table 7 shows different quantile (50%, 90%) distances for 3 differ-
ent datasets and the ratio between two groups for the medium (50%)
distance. We observe distances in the Within Entities group are
lower than those in the Random group. This holds when using both
RW andMF and both the 50% and 90% percentile and also across
different datasets. This highlights the ability of the embeddings to
represent related rows together; when the Base Table is encoded, it
incorporates information from other tables as well.

5.2 Removal of Nonpredictive Feature

In addition to correct edges, the graph also includes spurious edges
(i.e., not representing real KFK relationships) that bring in irrelevant
features. We show how the learning process filters these out.

If we knew a priori the set of fully predictive features X̃ , the
embedding generated from X̃ (denoted as Eclean) would directly
represent these features: value nodes are trained to represent the
embedding of the feature and row nodes sharing that value would
be clustered accordingly. The question inherently can be trans-
formed into the following: given that Eclean boosts downstream

1the ability of the embedding to represent related nodes close to each other

0 25 75 125 250
0

50

100

R
2

Neural Network

Linear Regression

Figure 3: Percentage of Noisy Data v.s. R2, (Higher is Better)

task performance, is the embedding Eall generated from X similar
to Eclean? In other words, does the supervision signal help remove
non-useful information? The answer is yes.

In real datasets, the predictive features are usually only a small
portion of all the features. In order to understand the influence of
non-predictive attributes on the embedding, we construct a syn-
thetic dataset STUDENT (schema in Table 1). Similar to Section 2,
the response variable Total Expenses can be fully predicted by Prices
in Price Info. The KFK to join Total Expenses and Total Expenses
itself are considered the set of clean attributes to be kept in Eclean .
To understand the robustness of the embedding with respect to
edges added due to non-predictive attributes, we inject to all three
tables K new attributes that are generated as white noise numerical
values. Using a bin size of 10, the generated values would induce
noisy edges between row nodes, which are uncorrelated with the
response variable. We constructed Eall from the database that con-
tains tables injected with noisy edges.

To see if the downstream model is capable of recovering Eclean
from Eall , we trained a fully connected network and a linear regres-
sor that finds the mappingM between shared tokens in Eall and
Eclean . We only trained the embedding on 80% of the shared tokens
and used the rest 20% as the test set. Specifically, we minimize for
each token ti in the training set, the mean squared error between
vectorsM (Eall (ti)) and Eclean (ti). Default parameters are used
to construct both Eall and Eclean . The relationship between R2 on
testing data with respect to the amount of injected noisy attributes
(as a percentage of clean data) is shown in Fig. 3.

Fig. 3 shows that even when the percentage of noisy attributes
increases, the neural network model can still recover the informa-
tion stored in Eclean . This is also true with the linear model, but its
degradation is faster than in the case of the neural network. This
demonstrates that the supervision signal will help remove spurious
information from the embedding.

6 EVALUATION

In this section, we present the evaluation results. We organize the
evaluation around the main research questions of the paper:
• RQ1:Does relational embedding boost the performance of down-
stream ML tasks?
• RQ2: Does relational embedding improve the performance of
downstream tasks compared to other embedding methods?
• RQ3: Does Leva scale to large datasets?
• RQ4: Are the embedding deployment techniques effective?
• RQ5: How sensitive is the embedding to parameters that config-
ure the system?

• RQ6: How does Leva perform in other data management tasks?
We start by describing the experimental setup, including metrics,

baselines, and datasets (Section 6.1).

6.1 Experimental Setup

Metrics. To measure the performance of downstream models, we
use accuracy for classification tasks and mean absolute error (MAE)
for regression tasks. We report the best performance after config-
uring model hyper-parameters using grid search.
Baselines. We compare the results of downstream tasks using our
embedding with other baselines: Base Table (referred to as Base
in the experiments), Full Table (Full) and Full Table + Feature

Engineering (Full + FE). Full and Full + FE require access to cor-
rect joins—we use datasets for which this information is available
so we make sure we use correct keys and join paths. Finally, to
demonstrate that a discovery system does not solve the problem,
we include Disc. In this baseline, we use an open-source discovery
system [12] to identify and materialize join to the Base table.

In addition, we also show aMax Reported baseline, that indicates
the best performance reported in the literature. Some datasets have
been long used as benchmarks in the machine learning community
and there are bespoke methods to maximize their performance.
Unlike these approaches, we do not perform any dataset-specific
tasks when constructing embeddings. But to show that embeddings
are able to achieve similar accuracy to hand-tuned models, we
include an experiment where we fine tune embeddings as well.
Embedding Setup. For each dataset, we train the embedding with
default textification strategies, using a weighted graph approach
and applying refinement techniques with θranдe = 50% and θmin =

5%. Embeddings have a size of 100 and a negative sampling rate 1e-3.
Settings are pre-determined and agnostic to downstream models
and tasks. For embedding methods, we report results from both
random-walk method (RW) and matrix factorization method (MF).
Datasets. We present the dataset characteristics in Table 4. We
include datasets both real and synthetic, with and without missing
data, with varied numbers of tables and rows, etc.

For classification datasets, Genes [14] predicts localization of
proteins and the dataset includes genes’ individual characteris-
tics and pairwise interactions as features. Kraken [15] consists of
anonymized sensors and usage statistics from the Kraken super-
computers. The response variable is the machine state. FTP [2]
predicts a binary gender label from product viewing logs and their
corresponding session information. Financial [4] contains success-
ful and unsuccessful loans along with loan and account information
and the task is to predict if a new loan will default.

For regression datasets, Bio [5] has atom-level, bond-level infor-
mation and the task is to predict the molecule’s bioactivity. Restbase
[1] predicts customers’ review information with restaurant infor-
mation and their geographic locations.

6.2 RQ1: Downstream ML Performance

In this section, we measure the performance of downstream tasks
when using both MF and RW approaches and other baselines pre-
sented above. We concentrate on classification and regression tasks.

Genes Financials FTP Kraken
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Base

Disc

Full

Full + F.E

Emb. MF

Emb. RW

Max Reported

(a) Random Forest

Genes Financials FTP Kraken
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Base

Disc

Full

Full + F.E

Emb. MF

Emb. RW

Max Reported

(b) Logistic Regression

Genes Financials FTP Kraken
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Base

Disc

Full

Full + F.E

Emb. MF

Emb. RW

Max Reported

(c) Neural Network

Figure 4: Classification Accuracy (Higher is Better) on Different Datasets and Models

Name #Tables #Rows Task Missing
Data

% String
columns

Genes [14] 3 6K C Y 93%
Kraken [15] 32 31K C N 0%
FTP [2] 2 96K C Y 50%

Financial [4] 8 1M C N 17%
Restbase [1] 3 19K R N 67%

Bio [5] 3 22K R Y 69%
Table 4: Classification (C) / Regression (R), Yes (Y) / No (N)

Classification. We evaluate many different baselines, on different
datasets, and using different models. The results are presented in
Fig. 4, where we show results for 3 different ML models: random
forest, logistic regression with ElasticNet regularization, and 2-layer
fully connected neural network, with a hidden layer dimension of
64. Hyperparameters are selected via grid search for every dataset.
Within each plot, the x axis shows the classification datasets from
Table 4, and the y axis shows (after hyper-parameter configuration)
the accuracy (i.e., higher is better).

We highlight several aspects of the experiment results. First, Full,
Full+FE, and Disc always outperform Base, and Disc never outper-
forms Full or Full+FE. This demonstrates the value of enriching the
Base Table with features from other tables, as previous research
has shown, and as practitioners are used to doing today. Second,
the relational embeddings outperform Full across models and for
3 datasets, and they always outperform Disc. They stay within 5%
performance with respect to Full+FE. The best news is that the em-
bedding was trained in a completely unsupervised fashion, unlike
Full, Disc, and Full+FE, which requires careful supervision by a
human that needs to know the schema and perform the adequate
joins, even using a discovery system (i.e., Disc). Without human
effort, the embeddings match the performance of carefully-crafted
training datasets even in the Financials and Kraken datasets, which
contain several relations. The results above are consistent across
models (see Fig. a, b, and c), despite variability across datasets.

The embeddings outperform Full+FE in some cases due to the
ability of the embeddings to encode string similarity better than
the one-hot encoding used by Full+FE. We include the percentage
of string columns in Table 4.
Do embeddings reduce total achievable performance?. The
relational embeddings boost the performance of the downstream
task without human effort. This makes them attractive to users
without domain knowledge or the ability to fine tune complex

LinearReg ElasticNet NN

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
A

bs
ol

ut
e

E
rr

or

Base

Full

Full + F.E

Emb. MF

Emb. RW

(a) Bio

LinearReg ElasticNet NN
0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
Base

Full

Full + F.E

Emb. MF

Emb. RW

(b) Restbase

Figure 5: Regression MAE (Lower is Better) on Different

Datasets and Models

machine learning models. And such users exist, as evidenced by
the growing popularity of AutoML techniques. Despite this benefit
of embeddings, we want to understand if they can perform as well
as the Max Reported accuracy. In other words, if the objective is
to improve the accuracy at any cost in human effort, we want to
verify whether this is possible to accomplish using embeddings.

Fig. 6a shows the results of the experiment using 3 of the previous
datasets. We show the Max Reported, the EmbMF and the Emb RW
accuracy again for reference. This time, we also performmanual fine
tuning on both embedding methods, EmbMW Fine Tuned and Emb
RW Fine Tuned. The fine tuning includes using domain knowledge
to drop tables from the database when they do not include relevant
information for the task at hand and doing a more exhaustive grid
search over the model parameters when training the model. Fig. 6a
shows fine tuning improves the quality of the embeddings, bringing
them close to the Max Reported accuracy. Given the evidence, we
believe the small gap between Max Reported and the embedding is
due to the amount of domain-specific knowledge we successfully
incorporated in the training process, and not to some fundamental
limitation of the embedding approach.
Regression. We structure the experiments for regression tasks
similar to the classification ones. In this case, for space efficiency,
we present different models within each plot, in the x-axis, and we
include a plot per dataset. We use linear regression, ElasticNet, and
a 2-layer fully-connected neural network, and the two regression
datasets from Table 5. We measure performance with MAE.

Similar to the classification results, we observe the Full and Full +
FE outperformBase across models and datasets. Additionally, we ob-
serve that the embedding method outperforms Base in all datasets
and even Full and Full + FE when using linear regression and Elas-
ticNet. Concretely, the average reduction for MAE is around 10% to
20% compared with Base and 5% to 10% compared with Full. Both

regression datasets contain a high percentage of string columns
(see Table 4) which explains why the embeddings outperform even
Full+FE, except in the case of neural networks. We attribute the
poor performance of neural networks here to the relatively smaller
size of the datasets. Using the neural network achieves the best
results in this experiment for all baselines and methods, and the
embedding performance is close to Full and slightly worse than
Full+FE, but without any human effort. Finally, there is no obvious
difference betweenMF and RW. Their real difference is related to
their scalability, which we measure later in this section.
Summary. Relational embeddings boost the performance of down-
stream ML tasks with respect to Base. They match the performance
of Full and Full+FE despite not requiring human involvement. This
resolves the tradeoff between human effort and performance with
a method that does not require human involvement but produces
comparable results with Full and Full+FE.

6.3 RQ2: Comparing Embedding Methods

The results of the previous section show embeddings boost the per-
formance of downstreammachine learning tasks. In this section, we
demonstrate that not any embedding method boosts performance
and that the way in which we construct our graph is necessary to
do so. For that, we compare the relational embedding as created by
Leva with several other methods to create embeddings, including
other state-of-the-art systems. We report the results in Table 5.

Emb. Method Genes Financial FTP
Word2Vec [31] 55 63 79
Node2Vec [20] 61 69 81
EmbDI [11] 63 67 81
DeepER [18] 70 73 82
Emb. MF 72 76 84

Emb. RW 73 74 83
Max Reported 76 [3] 86 [33] 87 [2]

Table 5: Classification Accuracy with Different Embedding

Training Methods

The table includes results for Word2Vec, Node2Vec, EmbDI [11],
DeepER [18], and for three different classification datasets.Word2Vec
directly textifies relational datasets row by row into a text corpus
that is trained to produce embeddings. Node2Vec builds a graph
directly based on syntactic relationships without additional refine-
ment and weighting. EmbDI[11] constructs a graph by linking cell
nodes with their corresponding rows and columns. DeepER [18]
looks up embedding through some pre-trained dictionary and ad-
vocates for a retrofitting mechanism for unseen words: creating
a graph with words as vertices and edges connecting vertices if
words co-occur in some tuple. We first observe that all graph-based
methods outperform the sequential baseline significantly. Among
graph-based methods, EmbDI performs similarly to Node2Vec and
DeepER outperforms EmbDI on this task. Both Leva’s embedding
methods,MF and RW, outperform all other baselines by 3-10 points
the performance across the 3 datasets. This highlights that the spe-
cific way of constructing and refining the graph helps to better
describe relationships between entities.

6.4 RQ3: Scalability

The relational embedding is more useful when schemas are com-
plex, data volumes large, and as a consequence, humans cannot join
them manually. Hence, scalability is a crucial property of a practi-
cal system. We first characterize the performance of the different
embedding methods.
Performance Profile. For both RW andMFmethods, We measure
the relative time in each of the pipeline stages (see Fig. 2). The
results are shown in Fig. 6 with runtime on the left of the plot.

The results of Fig. 6b and Fig. 6c show that the performance
bottlenecks are the embedding training stages: walk generation
and training when using the graph-based embedding method, and
matrix factorization stage when using that method. In particular,
textification and graph generation stages are negligible.
Scalability. To understand the growth of complexity, we build
a synthetic dataset with 3 tables, 2000 rows and 5 columns that
contains 4000 unique tokens in total. We control the growth of the
data by controlling a replication factor,K . At each replication factor,
we replicate the dataset K times and each time tokens are suffixed
with a version number from 1 to K . With this design of experiment,
both the number of rows and the number of distinct tokens grow
as a linear function of K . We compare the runtime and memory
footprint required to build the embedding. We report results for
EmbDI, Leva using RW and Leva using MF. Fig. 7a shows the
total runtime of each method as the replication factor, K grows.
The runtime behavior shows that random walk based methods,
including EmbDI and Leva with RW are an order of magnitude
slower than Leva with MF. For example, when the duplicate factor
is 100, MF only takes around 3 minutes to complete while RW
takes around 18 minutes. For memory consumption, RW consumes
around 50% less memory compared to MF across duplicate factors.

6.5 RQ4: Deployment Strategies

6.5.1 Inputting Embedding to Downstream Tasks. We explore the ef-
fects of different featurization strategies as explained in Section 4.4.
For a row in the Base Table, one method of featurizing is to directly
feed the row embedding vectors as features for ML task (Row only);
Another method is to concatenate row embeddings with value node
embeddings that share edges (Row + Value).

We note that the regularization methods employed on the ML
model influence the choice of deployment strategies of the embed-
ding. In Table 6, we use the results from Row as a baseline and
include results for Row + Value, with and without regularization.
The regularization methods are requiring a minimum number of
nodes per leaf node, penalizing with a Lasso penalty and adding a
dropout layer. We observe that in all cases, Row + Value and regu-
larization outperforms themselves without regularization. In most
of the cases, Row + Value outperforms Row, indicating the potential
boost of performance by adding value-specific information.

6.5.2 Dimension Reduction and Performance. Embedding outputs
are stored as key-value pairs, where keys are string tokens that
represent the node and values are floating-point embedding vectors.
The cost of storagemainly comes from storing the high-dimensional
vectors. We consider the effect of dimension reduction on trained
embeddings. In Table 7, the entry on row i and column j shows the

Genes Financials FTP
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Emb. MF

Emb. RW

Emb. MF, Fine Tuned

Emb. RW, Fine Tuned

Max Reported

(a) Fine Tuning Results

0 20 40 60 80 100

Genes
1k

Financial
75k

Bio
3k

FTP
7k

Textification

Graph Cons.

RW, Walk Generation

RW, Training

(b) Perf. Profile: RandomWalk Approach

0 20 40 60 80 100

Genes
11

Financial
234

Bio
35

FTP
77

Textification Graph Cons. MF

(c) Perf Profile: Matrix Factorization Approach

Figure 6: Fine Tuning Results and Performance Profiles

Name Row+Value
No Regularization

Row+Value
Regularization

Genes, RF -3.03 -0.88
Genes, LR +0.46 +2.97
Genes, NN -0.14 +1.94
FTP, RF -0.23 +0.17
FTP, LR +0.39 +1.05
FTP, NN +0.07 +3.39

Table 6: Ablation: Deployment Strategy

accuracy after projecting the embedding with original dimension i
into dimension j for Genes with standard PCA techniques.

Original
Reduced 5 25 50 100 200

5 57
25 55 63
50 56 62 72
100 52 61 68 74

200 51 59 63 66 68
Table 7: Accuracy Performance (Genes) with Different Em-

bedding Sizes Before and After PCA

The results in Table 7 demonstrate that larger embedding sizes do
not necessarily lead to higher performance, as evidenced by the dif-
ferent performance when the size is 100 and 200. More importantly,
smaller embedding sizes (e.g., 50), achieve performance that already
outperforms other baselines. This suggests that even if the mem-
ory footprint becomes a problem, smaller-sized embeddings yield
benefits. Apart from the embedding with size 200, we observe that
projecting embedding to smaller dimensional spaces only decreases
performance by a moderate amount. Therefore, when storage is
limited, users can avoid re-training the embedding by projecting it
to a smaller dimension without a significant quality loss.

6.6 RQ5: Ablation Experiments

6.6.1 Numerical Value Binning. In Section 4.1, we discussed the
importance of preserving numerical properties of the input data.
Binning numerical values not only reduces the total number of
value nodes created, but also preserves numerical proximity and
ordering. However, creating too few bins would lead to information

loss as all numerical values would be under the same bin; creating
too many bins would make it more likely for some bins to only
have one value. Since we create edges based on shared syntactic
relationships, no edges would be created for bins with single values.
This piece of information is therefore lost with too many bins.

As in Fig. 7b, we present the ablation experiments to understand
the influence of number of bins on downstream models. We note
that the orange line corresponds to accuracy on the Genes dataset
and the blue line corresponds to MAE on the Bio dataset. The plot is
made by constructing and evaluating embeddings with bin number
10, 20, 40, 80 and 160. When the number of bins is small, increas-
ing boosts performance on both the classification and regression
task. When bin number surpasses 80, we observe decreasing perfor-
mance, which indicates that overly binning numerical data removes
information that could have been useful to the ML task.

6.6.2 Weighted and Unweighted Graph. We present the tradeoff
between running time and performance in Section 4. To understand
the effect of graph weights on downstream model performance,
we construct for dataset Genes, Financial and FTP an unweighted
graph, and a weighted graph, where edges connecting value nodes
and row nodes have weights inversely proportional to the number
of edges value nodes have. The weights are then normalized per
node. In 7c, we observe that throughout the three datasets, we
observe a 1% to 3% performance boost in accuracy.

6.6.3 Restart walks. To better represent badly-represented nodes
in Section 4.2.2, we modify the random walk generation to force
restart from badly-represented nodes. Fig. 7c shows results with
and without restart walks, using random walk models on both the
Genes, Financial FTP dataset. For RW without restart, the system
starts from each node in the graph and generates random walks of
length 80. This process is repeated 10 times to generate the final
corpus; for RW with restart, the system only repeats the process 6
times and replaces the rest 4 iterations with the same number of
walks but only from the worst-represented nodes. We observe that
Fig. 7c the performances for two of the three datasets are boosted
by around 3% and the rest FTP dataset is boosted by 0.3%.

6.7 RQ6: Leva on Entity Resolution

Leva is designed to boost the performance of machine learning
tasks. Despite its original goal, its core technical contribution is

1 10 100 1000 10000

Duplicate Factor

0

2

4

6

8

10

12

L
og

T
im

e
(l

og
s)

0

20

40

60

80

100

120

140

M
em

or
y

(G
B

s)

Textification + Graph Cons.

Embedding Cons, RW

Embedding Cons, MF

EmbDI

RW Memory

EMBDI Memory

MF Memory

(a) Runtime and Memory v.s. Duplicated Factor

10 20 40 80 160
1.0

1.2

1.4

1.6

1.8

60.0

62.5

65.0

67.5

70.0

72.5

75.0
MAE - Bio

Accuracy - Genes

(b) Ablation: Number of Bins

Genes Financial FTP
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

R(N), Weighted(N)

R(N), Weighted(Y)

R(Y), Weighted(N)

R(Y), Weighted(Y)

(c) Ablation: Graph Weight and Restart Walks

Figure 7: Scalability Experiment w.r.t Duplicate Factor and Ablation Experiments

a relational embedding that resembles the one built by other ap-
proaches in the literature that target entity resolution tasks. In this
section, we ask what Leva’s performance is on entity resolution.We
compare against EmbDI and DeepER, two methods that build em-
beddings for this task. We use three datasets from the EmbDI [11]
paper. The results are shown in Table 8.

Leva performs better than EmbDI-S and DeepER, two baselines
that do not assume any pre-processing to the input data. And it
outperforms EmbDI-F in 1/3 datasets, where EmbDI-F models split
tokens individually.

Name EmbDI-S EmbDI-F DeepER Leva
BeerAdvo-RateBeer 0.50 0.82 0.58 0.75
Walmart-Amazon 0.59 0.75 0.63 0.67
Amazon-Google 0.14 0.57 0.62 0.59
Table 8: Entity Resolution Experiments, F1 Score

Leva performs well in a task for which it was not originally
designed. This suggests the relational embedding may have uses
beyond those presented in the paper.

7 RELATEDWORK

Dataset Augmentation. Both ARDA [15], Kumar et al. [27] study
how to augment the base table to improve downstream model per-
formance. As discussed earlier, these approaches rely on a set of pro-
posed potential joins and on the user’s prior knowledge of schema,
an assumption that we relax in our work. Auctus [16] is proposing
a system for automatic augmentation of training datasets, including
the discovery of web resources. We believe Leva’s embeddings can
complement some aspects of Auctus’s system.

Data and Join Discovery. Data Discovery systems such as Au-
rum [12], and libraries such as LSHEnsemble [42] help users to
identify new datasets, including join paths. [34] proposes DLearn
that learns relational models from inconsistent and dirty data with
the help of database constraints. These approaches are orthogo-
nal and potentially complementary to Leva. They may help users
identify join paths, but they do not focus on augmenting training
datasets in an unsupervised manner.

Language and Graph Embedding Methods. Language Embed-
ding models such asWord2Vec [31], Node2Vec [20], GloVe [32], and
recently-developed transformer-based ones, such as BERT [17] are

largely orthogonal to Leva’s contributions. Similar to language em-
beddings, we have seen many works on efficiently computing graph
embeddings through matrix factorization techniques [22, 30, 41]
and graph embedding methods, i.e., GCN [25], GAT [40]. GCNmoti-
vates a variant of convoluted neural network that uses a first-order
approximation of spectral graph convolutions. GAT replaces ex-
pensive matrix multiplications with self-attentional layers. Newer
language and graph embedding techniques, as well as faster matrix
factorization methods, can be easily incorporated in the pipeline in
Section 4. Leva directly benefits from development in these areas
and their contributions are orthogonal to Leva’s as well.

Knowledge Base Embedding. There is extensive work in embed-
ding knowledge graphs (bases) [24]. RESCAL [26] models triples
from a knowledge base via the pairwise interactions of latent fea-
tures. Similarly, structured embeddings and subsequent work [8, 9,
28, 39] learn embeddings for each relation from the triples. These ap-
proaches focus on learning latent variables that describe the triples,
to later fill in values of an incomplete knowledge base. These ap-
proaches can be used to embed the graph Leva constructed.

8 CONCLUSIONS

This paper presents Leva, a system that creates relational embed-
ding for downstream machine learning models. Leva reconstructs
join information and recover predictive features from the embed-
dings during downstreammodel training time. It consists of an input
and textification stage, that converts heterogeneous data into texti-
fied inputs, a graph construction and refinement stage that builds and
refines the graph built upon syntactic relationship, an embedding
construction stage that converts graphs into embeddings through
matrix factorization or randomwalks, and an embedding deployment
stage where embeddings are featurized into downstreammodel. We
show that Leva is able to preserve information distributed across
tables and resembles, if not outperforms, many of the manually
joined methods.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their feedback, authors of
EmbDI for kindly sharing their code and offering their help, and
other members of ChiData for valuable discussions. We would also
like to thank Chameleon Cloud for providing computing resources.

REFERENCES

[1] [n.d.]. Home. https://sourceforge.net/projects/proper/files/Datasets/raw/
[2] [n.d.]. pakdd’15 datamining competition: gender prediction based on e-commerce

data. http://challenge.mimuw.edu.pl/contest/info.php?id=107
[3] Anna Atramentov, Hector Leiva, and Vasant Honavar. 2003. A multi-relational de-

cision tree learning algorithm–implementation and experiments. In International
Conference on Inductive Logic Programming. Springer, 38–56.

[4] Petr Berka. 1999. Workshop notes on Discovery Challenge PKDD’99. http:
//lisp.vse.cz/pkdd99/

[5] Hendrik Blockeel, Sašo Džeroski, Boris Kompare, Stefan Kramer, and Bernhard
Pfahringer. 2004. Experiments In Predicting Biodegradability. Applied Artificial
Intelligence 18, 2 (2004), 157–181. https://doi.org/10.1.1.2.3797

[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
1989. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM
(JACM) 36, 4 (1989), 929–965.

[7] Rajesh Bordawekar and Oded Shmueli. 2017. Using Word Embedding to Enable
Semantic Queries in Relational Databases. In Proceedings of the 1st Workshop on
Data Management for End-to-End Machine Learning. ACM, Chicago IL USA, 1–4.
https://doi.org/10.1145/3076246.3076251

[8] Antoine Bordes, Nicolas Usunier, et al. 2013. Translating Embeddings for Model-
ing Multi-relational Data. In NIPS.

[9] Antoine Bordes, Jason Weston, et al. 2011. Learning Structured Embeddings of
Knowledge Bases.. In AAAI.

[10] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (Mel-
bourne, Australia) (CIKM ’15). Association for Computing Machinery, New York,
NY, USA, 891–900. https://doi.org/10.1145/2806416.2806512

[11] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. ACM, Portland OR USA, 1335–1349. https://doi.org/10.1145/
3318464.3389742

[12] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, andM. Stonebraker.
2018. Aurum: AData Discovery System. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE). 1001–1012. https://doi.org/10.1109/ICDE.2018.00094

[13] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:
A Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and
Containment. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 1190–1201. https://doi.org/10.1109/ICDE.2019.00109

[14] Jie Cheng, Christos Hatzis, Hisashi Hayashi, Mark-André Krogel, Shinichi Mor-
ishita, David Page, and Jun Sese. 2002. KDD Cup 2001 report. , 47 pages.
https://doi.org/10.1145/507515.507523

[15] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: automatic relational data augmentation
for machine learning. Proceedings of the VLDB Endowment 13, 9 (May 2020),
1373–1387. https://doi.org/10.14778/3397230.3397235

[16] Fernando Chirigati, Rémi Rampin, Aécio Santos, Aline Bessa, and Juliana
Freire. 2021. Auctus: A Dataset Search Engine for Data Augmentation.
arXiv:2102.05716 [cs.IR]

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[18] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity
resolution. Proceedings of the VLDB Endowment 11, 11 (Jul 2018), 1454–1467.
https://doi.org/10.14778/3236187.3236198

[19] Raul Castro Fernandez and Samuel Madden. 2019. Termite: a system for tunneling
through heterogeneous data. In Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management - aiDM ’19.
ACM Press, Amsterdam, Netherlands, 1–8. https://doi.org/10.1145/3329859.
3329877

[20] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, San Francisco California USA,
855–864. https://doi.org/10.1145/2939672.2939754

[21] Anshul Gupta, George Karypis, and Vipin Kumar. 1997. Highly scalable parallel
algorithms for sparse matrix factorization. IEEE Transactions on Parallel and
Distributed systems 8, 5 (1997), 502–520.

[22] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2010. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. arXiv:0909.4061 [math.NA]

[23] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[24] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2021.
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications.
IEEE Transactions on Neural Networks and Learning Systems (2021), 1–21. https:
//doi.org/10.1109/TNNLS.2021.3070843

[25] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[26] Denis Krompaß, Maximilian Nickel, et al. 2013. Non-negative tensor factorization
with rescal. In ECML workshop.

[27] Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To
Join or Not to Join?: Thinking Twice about Joins before Feature Selection. In
Proceedings of the 2016 International Conference on Management of Data. ACM,
San Francisco California USA, 19–34. https://doi.org/10.1145/2882903.2882952

[28] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical
tensor decomposition for knowledge base completion. In International Conference
on Machine Learning. PMLR, 2863–2872.

[29] Alyssa Whitlock Lees, Cong Yu, Huan Sun, Will Wu, and Xiang Deng. 2020.
TURL: Table Understanding through Representation Learning.

[30] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. PyTorch-BigGraph: A Large-scale Graph
Embedding System. In Proceedings of the 2nd SysML Conference. Palo Alto, CA,
USA.

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
2013. Distributed Representations of Words and Phrases and their Com-
positionality. In Advances in Neural Information Processing Systems, C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.),
Vol. 26. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[33] Matic Perovšek, Anže Vavpetič, Janez Kranjc, Bojan Cestnik, and Nada Lavrač.
2015. Wordification: Propositionalization by unfolding relational data into bags
of words. Expert Systems with Applications 42, 17-18 (2015), 6442–6456.

[34] Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. 2020. Learning
Over Dirty DataWithout Cleaning. CoRR abs/2004.02308 (2020). arXiv:2004.02308
https://arxiv.org/abs/2004.02308

[35] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factoriza-
tion. In The World Wide Web Conference. 1509–1520.

[36] Ram Sagar. 2021. Big Data To Good Data: Andrew Ng Urges
ML Community To Be More Data-Centric And Less Model-Centric.
https://analyticsindiamag.com/big-data-to-good-data-andrew-ng-urges-
ml-community-to-be-more-data-centric-and-less-model-centric/

[37] Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana
Freire. 2021. Correlation Sketches for Approximate Join-Correlation Queries.
arXiv preprint arXiv:2104.03353 (2021).

[38] Vraj Shah, Arun Kumar, and Xiaojin Zhu. 2017. Are key-foreign key joins safe to
avoid when learning high-capacity classifiers? arXiv preprint arXiv:1704.00485
(2017).

[39] Richard Socher, Danqi Chen, et al. 2013. Reasoning with Neural Tensor Networks
for Knowledge Base Completion. In NIPS.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[41] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. Inter-
national Joint Conferences on Artificial Intelligence Organization, 4278–4284.
https://doi.org/10.24963/ijcai.2019/594

[42] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH Ensem-
ble: Internet Scale Domain Search. CoRR abs/1603.07410 (2016). arXiv:1603.07410
http://arxiv.org/abs/1603.07410

https://sourceforge.net/projects/proper/files/Datasets/raw/
http://challenge.mimuw.edu.pl/contest/info.php?id=107
http://lisp.vse.cz/pkdd99/
http://lisp.vse.cz/pkdd99/
https://doi.org/10.1.1.2.3797
https://doi.org/10.1145/3076246.3076251
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICDE.2019.00109
https://doi.org/10.1145/507515.507523
https://doi.org/10.14778/3397230.3397235
https://arxiv.org/abs/2102.05716
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.1145/3329859.3329877
https://doi.org/10.1145/3329859.3329877
https://doi.org/10.1145/2939672.2939754
https://arxiv.org/abs/0909.4061
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1145/2882903.2882952
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2004.02308
https://arxiv.org/abs/2004.02308
https://analyticsindiamag.com/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/
https://analyticsindiamag.com/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/
https://doi.org/10.24963/ijcai.2019/594
https://arxiv.org/abs/1603.07410
http://arxiv.org/abs/1603.07410

	Abstract
	1 Introduction
	2 Background and Problem Setting
	2.1 Choosing a Training Dataset
	2.2 Machine Learning over Relational Data
	2.3 Embedding Relational Data
	2.4 Problem Statement and Goal

	3 Relational Data As Graphs
	3.1 Graph Construction With Value Nodes
	3.2 Graph Refinement: Voting and Weighting
	3.3 Graph Construction Strategies

	4 Leva Overview
	4.1 From Relation To Text
	4.2 Embedding Construction
	4.3 Embedding Method Analysis
	4.4 Embedding Deployment

	5 Embedding: Why Does It Work?
	5.1 Information Integration From Embeddings
	5.2 Removal of Nonpredictive Feature

	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Downstream ML Performance
	6.3 RQ2: Comparing Embedding Methods
	6.4 RQ3: Scalability
	6.5 RQ4: Deployment Strategies
	6.6 RQ5: Ablation Experiments
	6.7 RQ6: Leva on Entity Resolution

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

