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ABSTRACT

The growing adoption of data analytics platforms and machine
learning-based solutions for decision-makers creates a significant
demand for datasets, which explains the appearance of data markets.
In a well-functioning data market, sellers share data in exchange for
money, and buyers pay for datasets that help them solve problems.
The market raises sufficient money to compensate sellers and incen-
tivize them to keep sharing datasets. This low-friction matching of
sellers and buyers distributes the value of data among participants.
But designing online data markets is challenging because they must
account for the strategic behavior of participants.

In this paper, we introduce techniques to protect data markets
from strategic participants, even when the asset traded is data.
We combine those techniques into a pricing algorithm specifically
designed to trade data. The evaluation includes a user study and
extensive simulations. Together, the evaluation demonstrates how
participants strategize and the effectiveness of our techniques.
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1 INTRODUCTION

In an increasingly data-driven world, access to data is more valuable
than ever before. The growing adoption of data analytics platforms
and machine learning-based solutions for decision-makers creates a
significant demand for datasets, and this has led to the appearance
of data markets [16, 27]. Current data markets [8, 21, 62, 63] work as
a storefront showing a list of datasets for sale, but data transactions
involve tedious one-off negotiations between sellers and buyers.
Worse, datasets’ prices are set in an ad-hoc manner and as a result,
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sellers risk losing revenue, and buyers risk overpaying. In a well-
functioning data market, sellers share data in exchange for money,
and buyers pay for datasets that help them solve problems. The
market raises sufficient money from buyers to compensate sellers
for their data and incentivize them to share more datasets. A key
challenge to designing these low-friction matching of sellers and
buyers is to price data in a way that maximizes data transactions
that distribute the value of data.

In well-functioning markets of common goods and services,
prices are set based on the forces of supply and demand. Unfortu-
nately, the methods used to price common goods and services do
not apply directly to data [4] due to its unique characteristics:

e Data’s combinatorial power. Market mechanisms for common
goods rely on knowledge about the consumers’ willingness to pay
for the good to set a price. Such knowledge is obtained via market
research techniques [58]. Unlike common goods, data can be used
for many different purposes, each with different value for the ben-
eficiary. And because data can be combined with other datasets,
its uses are numerous and hard to quantify. Together, this means
that it is not possible to assume a priori knowledge of consumer’s
willingness to pay for data. As an asset, data resembles more a piece
of art, an expensive bottle of wine, or diverse antiques (that are
hard to price due to lack of knowledge of consumers’ willingness
to pay) than it resembles cars, houses or other digital goods such
as a movie rental or a concert ticket, where market research will
offer insights on consumers’ willingness to pay.

e Data is nonrival and easy to replicate. Unlike antiques, art,
or bottles of wine which can be allocated to a consumer once (i.e.,
they are rival goods), data can be used by all consumers at once, i.e.,
it is a nonrival asset more similar to an idea. Furthermore, because
data is easy to replicate, it is possible to make data available to
everyone who benefits from it at low marginal cost. What this
means is that the auction techniques [50] used successfully to trade
rival assets with unknown consumer’s willingness to pay such as
antiques and art cannot be directly used with data. Although there
are techniques to sell digital goods (with infinite supply) these are
meant to sell those goods once. A single dataset can be sold multiple
times over time (e.g., as part of different data combinations) for
different purposes with different valuations.

In this paper, we design pricing algorithms for data markets.
Although the pricing algorithm could in principle be used to trade
any asset, that is undesirable because there are better pricing meth-
ods to trade common goods and services. The opposite is not true,
pricing algorithms for common assets do not apply to data due to
the characteristics described above.

In designing a pricing algorithm for data, we want to set prices
for seller-provided datasets based on the demand generated by in-
terested buyers via submitted bids. Because we do not know buyers
willingness to pay, we cannot use traditional auction theory that
relies on that knowledge. Instead, we resort to prior-free techniques,
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such as those that learn prices online, as bids are received [35]. In
this paper, we focus on the design of protection techniques to shield
the pricing algorithm from bids submitted by strategic buyers that
try to improve their benefits. In doing so, the paper complements
the growing literature on data markets in data management by
drawing attention to the need for protection from strategic behav-
ior. To address strategic behavior, we propose a pricing algorithm
for buyer-seller markets of the kind described above that tackles
the following challenges:

o Because price is set based on bids generated by human buyers,
these may send artificially low bids to overfit the price in a prof-
itable direction. We introduce Epoch-Shield to protect against these
artificially low bids.

o Buyers benefit from a dataset as long as they obtain it within a
time period, e.g., if they buy the data earlier than the time it takes
them to collect it or prepare it manually. Some buyers will strategize
over time within the full period, e.g., bidding low to drive the prices
of datasets they want down just before the submit a real bid. We
introduce Time-Shield to protect against this behavior.

® Buyers will not always choose the optimal action i.e., they make
boundedly-rational choices. This is important to account for be-
cause non-optimal decisions can hurt the market. We introduce
Uncertainty-Shield to protect against boundedly-rational behavior.

We combine the above techniques into a pricing algorithm. We
conduct an IRB-approved user study to: i) motivated the need to
protect data markets; ii) to demonstrate the effectiveness of the pro-
tection techniques. We complement the user study with extensive
simulations that study and show the effectiveness of our techniques
in different scenarios. We discuss an alternative implementation
of the pricing algorithm that uses differential privacy (Section 6.3).
Finally, we discuss an ex-post version of the algorithm (Section 8)
that works even when buyers do not know the dataset valuation
before using the data, i.e., when data is an experience good.

We organize the rest of the paper as follows. Section 2 presents
the market model. Sections 3, 4, and 5 introduce the protection
techniques, followed by their integration in the pricing algorithm
(Section 6). We then present the evaluation results in Section 7
followed by a discussion of the ex-post algorithm in Section 8, and
related work in Section 9. We present the conclusions in Section 10.

2 DATA MARKET MODEL

In this section, we present the market model (Section 2.1), followed
by the data buyer model in Section 2.2, and the arbiter model in
Section 2.3, before explaining the challenges of designing data
markets when buyers are strategic in Section 2.4.

2.1 Data Market Preliminaries

A market consists of buyers who want to buy datasets, sellers who
want to share datasets in exchange for a reward such as money,
and an arbiter, as shown in Fig. 1.

The arbiter’s goal is to generate transactions that satisfy the buy-
ers’ requests with the seller’s supplied datasets. It needs to achieve
this while maximizing the revenue extracted from buyers to com-
pensate sellers and incentivize them to keep sharing data. Achieving
this goal requires generating transactions. To do so, the arbiter may
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Figure 1: Market Model. B are buyers and S are sellers. They
exchange datasets via an Arbiter that finds data appropriate
for buyers, and prices it according to its demand.

combine datasets uploaded by sellers to expand the offering be-
yond individual datasets and hence the likeliness of satisfying the
buyers’ needs (step 3 in Fig. 1)!. Buyers declare their interest for a
desired dataset d’ (see the figure) with a bid, as illustrated in step 2
of the figure (we explain below how they generate the bid). This
bid propagates? to the datasets used to produce d’, which in the
example correspond to di and dy. As a result of the previous flow,
the same dataset may participate in multiple different combined
datasets to satisfy the needs of the same or different buyers over
time. This means that the market cannot restrict buyers to bid only
once because that would significantly limit the market’s potential
utility [37]. The consequence of multiple buyers participating in
the market is the generation of a stream of bids that apply to the
datasets uploaded by sellers. In addition to generating transactions,
the arbiter’s goal is to find a way of pricing the datasets based on
the bids so as to maximize revenue, incentivizing sellers to keep
sharing datasets.

Sellers share data, d, with the arbiter in exchange for money (1 in
the Figure). We do not include data licensing or sharing agreements
in our model because they do not affect the protection mecha-
nisms we introduce. We assume dataset exchange does not create
externalities [3], i.e., no personal or private information is traded.
This assumption is consistent with the major data markets today
[8, 62, 63] which do not permit trading personal information.
Buyers have varied data management needs, from augmenting a
training dataset with additional features and samples, to obtaining
a curated dataset useful to complete a report, and many others.
Similarly, buyers may require datasets with specific formats, with
specific quality (e.g., no missing values) and other intrinsic prop-
erties they find valuable. These requirements become part of the
specific data management need. We abstract away the specific use
cases by assuming buyers can link the business value of solving
their data management tasks to a valuation, v;, which is private
information only they know>. Then, buyers send a bid, b; to the
market indicating how much they are willing to pay to obtain d’
(2 in Fig. 1). This permits the design of a conceptually simple and
general market model. Because d” can be sold infinite times buyers
may try to send false bids, b; < v;, also called non-truthful or strate-
gic bids. Buyers would send these strategic bids hoping they can
still obtain d” at a lower price. Buyers’ strategic behavior imposes
another requirement on the arbiter, who must protect the pricing
mechanism against strategic behavior.

'We do not deal with the problem of combining datasets, we assume manual labor or
integration solution is available

2We do not deal with the problem of bid propagation in this paper but note that it can
be solved using provenance techniques.

3We break the assumption of buyers knowing the valuation a priori in Section 8



Scope of this paper. There are many types of market attacks, in-
cluding strategic, exploitation, and collusion attacks. The attack may
originate from buyers, arbiter, and sellers. In this paper we focus on
buyers only. Exploitation attacks include denial of service attacks
and false-name bidding, where buyers create multiple identities.
Deterrent mechanisms against exploitation attacks include legal
and technical mechanisms. For example, a technical mechanism to
prevent false-name bidding is to bind bids to buyers via a signature
scheme that requires a proof of identity. In collusion attacks, multi-
ple different buyers form coalitions outside the market. Note that a
single buyer may use false-name bidding to form a coalition, but
we addressed false-name bidding above. Coalitions can be harmful
when they share the information they learn from interacting with
the market, when they collaborate to influence prices in a profitable
direction, and when they cost-share buying data and then exchange
it internally. Mechanisms to deal with exploitation attacks are or-
thogonal to the techniques we introduce in this paper, so we assume
a market deployment implements those techniques and hence there
are no false-name bids in our setup. A full treatment of collusion is
out of the scope of this paper. As many others, we assume collusion
does not take place [32, 33]. The scope of this paper is the design
of a pricing algorithm for data markets that is robust to buyers’
strategic behavior.

2.2 Buyer Model: Patience and Valuation

A buyer i wants to obtain data, d, to increase its utility, u;. Buyer’s
utility depends on: i) whether they get d as determined by the
allocation function X; ii) the difference between the price paid for d,
p:(d) and the buyer’s private valuation v;; and iii) when the dataset
is allocated. u; is defined as follows:

ui(vi, b, t,d, 1) = 8(tj, t) = X(bj, pr(d)) * (vi — pr(d)) (1)

t € [0, ...) indicates time and increases monotonically. The allo-
cation decision, X; = 1* when b; > pi(d), ie., the bid is higher than
d’s price at time t. X; = 0 when buyers lose the allocation, in which
case u; = 0. The deadline-patience function, 5(z;, t), takes value 1
when t < 7; and 0 otherwise. This function represents scenarios
where a dataset is only useful to the buyer if obtained before a
deadline, 7; € [0,...). The buyer’s deadline, 7; is private informa-
tion to the buyer and unknown to the arbiter. When X; = 1, and
the allocation takes place before the deadline, 7;, the utility is the
difference between the buyer’s private valuation, v; (which is how
much value the buyer associates with d), and the price of d at time ¢,
which is determined by p;(d). The larger the difference between v;
and p;(d), the larger the utility. The market implementation must
ensure there are no pending bids after a buyers’ deadline has passed.
Our proposal and algorithm assumes the market implementation
correctly achieves this goal.

Deadline-patience utility function: Many real data manage-
ment tasks require access to integrated datasets. An integrated
dataset is a combination of other existing datasets, prepared for
a specific task such as training a machine learning model or pro-
duce a report from a business intelligence tool. Integrating datasets
is a time-consuming and tedious process [28]. With this context,

4X is the allocation function and X; is the allocation decision for buyer i

consider a data analyst facing the decision of investing time on
integrating datasets manually to produce the desired dataset, or
sourcing an appropriate dataset externally [27], for example, by
acquiring it in a data market. For the analyst to benefit from the
market, it must obtain the dataset in less time than what it would
take to prepare it manually, and that provides a deadline, 7;, within
which the market yields utility to the analyst, i.e., who plays the
role of a buyer when interacting with the data market. We note
that the approach presented in the paper supports other patience
functions, such as those that would progressively decrease the util-
ity for the buyer; we stick to the simpler to define yet realistic
deadline-function because it simplifies the subsequent analysis.

Interpreting Buyer’s Private Valuation. A buyer’s utility de-

pends on its private valuation, v;, which the buyer may know

before bidding or not. We consider both scenarios below.

Buyers know their valuation in advance. Sometimes buyers can link
dataset to business value, so they know how to value such a dataset,

i.e., they know their private valuation v;. In this case, buyers com-

municate their value to the arbiter via a bid, b;.

Buyers know v; after using the data, ex-post. Sometimes, data is an

experience good [19] because its value to the buyer is not known
until after data has been used for a task. For example, this hap-
pens when a buyer wants to engage in an exploratory task using
a dataset but does not know how much value will be extracted
from such activity a priori, and hence they do not know v;. We
assume, however, that buyers learn their v; after using the data,
and we discuss a technique in Section 8 that supports data trading
under this challenging scenario. Until then, we assume the common
scenario where buyers know their valuation.

2.3 Arbiter Model and Posting Price

The arbiter must allocate data to buyers to maximize revenue that
is used to compensate and incentivize sellers to keep sharing data.
The arbiter could allocate data to anybody who asks because data
is non-rival, but then buyers would bid low knowing that they will
receive the data anyway, and consequently, the arbiter would not
raise sufficient revenue to motivate sellers to share.

Overview of mechanism design. Mechanism design [52] studies
the design of allocation and pricing functions to optimize a market
objective such as welfare or revenue. When the buyer’s value distri-
bution is known a priori, such as often assumed in the Economics
literature [50], the design of auctions and posting price mechanisms
is well understood even for revenue maximization scenarios. For
example, the performance of a second price auction with reserve
price is well characterized[35] when buyer’s value distribution is
well known and can be used to calculate the reserve price. How-
ever, when buyer’s value distribution are not known (such as when
selling data) the options narrow down to prior-independent and
prior-free approaches. Among those, we highlight techniques based
on online learning (and regret minimization) that try to learn the
value distribution on the fly [13, 40]. The methods we use in this
paper have this online learning flavor, but our focus is on protecting
them from strategic buyers, as we explain next.

Posting Prices. One approach to make allocation decisions that
takes into consideration the demand for data is to choose a posting



price, p, given by the pricing function p;(d), before receiving bids
for d. Bids higher than the posting price win and winners pay the
posting price [42]. With this mechanism, buyers face a simple action
space, where bidding their true valuation is both easy and their best
bet to win the allocation. Still, some buyers will try to strategize.
Using this approach the arbiter makes allocation decisions as bids
arrive, hence returning an answer to buyers with low latency, and
hence, not affecting negatively their utility, which depends on when
they obtain the dataset due to the patience parameter.

The challenge of posting price mechanisms is choosing p before
the bids arrive. We call update algorithm, a(I;), to the algorithm that
chooses p;(d) based on a vector of bids, b. Before discussing design
options for a(l;), it is helpful to consider first the optimal posting
price if all bids were known in advance.

Optimal Posting Price: Consider an arbiter wants to choose p to

maximize revenue in one round of bids; this is a digital goods auc-
tion [11, 13, 34]. Suppose the buyer’s bids, b are known in advance,
and let by be the k-thlargest bid in b. Then, an algorithm maximizes
revenue when it chooses k such that k * by is maximum:

M(b) = max(k « by, )

According to this algorithm, p;(d) = by (break ties by choosing

larger by). In this case, all buyers with b; > by win and obtain the
data by paying by. The rest of the buyers lose and do not obtain
the data. The arbiter raises k * by in revenue. This ideal mechanism
works when bids are known in advance.
Online Posting Price: In data markets, bids, b, arrive in a streaming
fashion. It is possible to use online algorithms [11, 13, 34, 40] that
use past bids to implement a(l;) and calculate p with good revenue
guarantees. Unfortunately, online mechanisms will be gamed by
buyers, so they must be protected from buyers’ strategies.

2.4 Challenges of Pricing in Data Markets

Buyers know the update algorithm used by the arbiter to set p be-
cause we do not want to protect the market through obscurity, akin
to the rejection of the security by obscurity principle in security
engineering [53]. Then, because buyers know p;(d) is chosen based
on past bids, buyers can send artificially low bids to overfit the al-
gorithm in a direction that is profitable for them. To protect against
this behavior we introduce Epoch-Shield (Section 3). Buyers will
react to the existence of Epoch-Shield and strategize by exploiting
all the time they have available before their deadline expires to
obtain the data. To protect against these strategic bids over time,
we introduce Time-Shield (Section 4). Finally, some buyers may bid
erratically, harming market’s revenue: we protect the market from
this behavior with Uncertainty-Shield (Section 5).

3 EPOCH-SHIELD PROTECTION

In this section, we present Epoch-Shield, a technique to protect data
markets from strategic low bids. Buyers will react to Epoch-Shield,
however, and that is why we need the Time-Shield protection mech-
anism of the next section to complement Epoch-Shield.

3.1 Preliminaries

Two-Round Posting Price Mechanism is not Truthful. Con-
sider a buyer who knows the arbiter uses a(l_;) to choose p;(d) and
has two opportunities to bid, at time ¢; and t,. The prices chosen by
a(g) at times t; and tp are p; and py, respectively. To maximize its
utility, the buyer bids non-truthfully b; < v; at #;, hoping that a(g)
will adapt p; in order to reflect the new demand, making p, < p;.
At ty, the buyer bids truthfully, b; = v;. If its first bid success-
fully drove the price down, then buyer’s utility increases because
v; — p2 = v; — p1. This strategic behavior harms the market’s
revenue because the arbiter does not know if buyers are truthful.

3.2 The Epoch-Shield Technique

The insight buyers exploit to game the market is that a(l;) will adapt
p¢(d) based on the incoming bids. Our goal is to design a(g) so that
it is hard to game. This is achieved by designing a(l;) so no single
bid influences the price by much.

Epoch-Shield: Computing on epochs instead of individual
bids. Instead of updating p;(d) using the latest bid, it is updated
using the last E > 1 bids. We call E epoch. An epoch logically splits
the incoming sequence of bids into disjoint groups of E bids, akin
to how a window splits an event stream in stream processing [61].

The posting price is updated once per epoch, and new incoming
bids are evaluated against the latest posting price. Buyers do not
know the epoch size and therefore do not know when posting prices
are updated. By choosing p;(d) based on E, the arbiter can choose
a function to smooth out the effect of any single bid based on an

update algorithm, a(b).

Update algorithm. When choosing an update algorithm, we wish
two properties: i) that a single bid’s influence on the function’s
output is not significant; ii) that it is not clear, from the buyer’s per-
spective, what bid drives the posting price in the desired direction.
For example, a simple average, a(g) = avg(g) is not appropriate
because it is sensitive to outliers, i.e., low bids. A robust statistic,
such as the median, is preferable because the influence of a single
bid is lower. However, from the perspective of a strategic buyer, it
is clear that bidding low is strictly helping its cause by moving the
median in the desired direction.

To make it hard for buyers to influence the price, the arbiter
computes p;(d) for the next epoch based on the bids collected in
the current epoch according to Equation 2, so p;(d) = by. The
advantage of using this algorithm is that buyers are no longer
guaranteed to influence p;(d) by bidding low because finding the
bid that optimizes the influence on p;(d) is hard. In particular, to
game the market, a buyer must find a b;f‘ so that:

argmin r(b|IbY) st r(blbY) > r(b), pr(bllb}) < pr(b)  (3)

where r(l_;) is a function that returns the optimal revenue, pr() is
a function that returns the posting price, and || is the concatenate
operator. The two conditions of the optimization problem are inter-
preted as follows. First, after receiving a new bid, b;, the arbiter will
only change p;(d) if it makes more revenue by doing so: b; must
cause a change in p;(d). The second condition says that the price



must be changed in the direction that benefits the buyer: b} lowers
the price, increasing the buyer’s utility. The buyer cannot solve the
above optimization problem because it does not know what bids
are part of the epoch. As a consequence, buyers no longer know
what bids guarantee to drive prices down.

3.3 Analysis

The larger E, the larger the amount of information a buyer needs
to learn to solve the optimization problem. For that reason, we say
that E determines the degree of protection. Unfortunately, higher
protection does not come for free.

Claim 1: (Protection-Revenue Tradeoff) In an online post-
ing price data market, where posting prices are chosen based
on epochs, the larger the epoch size, the lower the optimal
revenue. Consider a vector of bids, l_; and the optimal revenue
r(b) = k % by, where by, is the k-th largest bid in b and k the position
of by in the sorted vector b. k is computed based on equatlon 2.
We want to show that if we partition b into two partitions, by and
bz, then r(b) < r(bl) + r(bz) To show that, consider we construct
by by copying all bids from b except for one, b,. by only contains
bc. Consider two scenarios. First, if b, < bk, then r(b) r(b1)
so r(b) r(bl) + r(bz) If be > bk, then r(bl) = r(b) — by, and
r(bg) = be. Since b > by, then r(b) r(bl) + r(bz) The result
generalizes to more partitions by induction. This shows that more
partitions lead to higher revenue. Higher E means fewer partitions
and therefore lower revenue.

The buyer social surplus, defined as the total utility of buyers,
depends on the allocation decisions for each buyer, X;, as well as
the difference between v; and p;(d). The maximum social surplus is
achieved when p;(d) = by = 0 because any b; > 0 will be allocated
the dataset and because this maximizes the difference between v;
and p;(d), i.e., the buyers’ utility. Then, it is clear that as by grows,
social surplus decreases. However, there is no clear relationship
between changes in E and changes in by.

4 TIME-SHIELD PROTECTION
4.1 Preliminaries

Buyer’s strategy. We assume that a buyer can bid at most once per
time period, t € [0, ...), and this is enforced by the arbiter. A buyer
with patience 7; can bid a total of T; = 7; — ¢ times, with ¢ indicating
the current period. After the deadline, the buyer’s utility becomes
zero, so the buyer wants to win the allocation before the deadline.
The buyer has T; allocation opportunities to win the dataset.

A buyer who wins an allocation within its deadline maximizes
its utility when the gap between its private valuation, v;, and the
price, ps(d) is largest. Because buyers know the arbiter adjusts p;(d)
based on past bids, strategic buyers may design a sequence of T; — 1
bids aimed to drive prices down. Strategic buyers bid low with
the intention of influencing future prices so that pr,—1(d) < p(d),
hence increasing their utility.

Introduction to Waiting Protection. In an ideal protection sce-
nario, when a strategic buyer submits a strategic bid (b; < v;), the
arbiter prevents them harming the market performance by letting
that strategic buyer bid exactly only one more time before their

deadline, hence, giving them only one more chance to win the
allocation. This can be achieved by making strategic buyers wait
for a wait-period w;. When w; = T; — 1, the buyer’s patience is
exhausted. This wait-period forces strategic buyers to participate
in what equates a single-bid round where they cannot strategize
anymore without risking losing utility.

In practice, the arbiter does not know the buyer’s deadline z;
so it cannot set w; = T; — t. If set too short, buyers will ignore
the wait-period penalty and continue strategizing. If set too long,
w; > T;, buyers utility becomes 0, and the market extracts no
revenue because there is no payment. Furthermore, if b; < v;, the
arbiter cannot tell if b; is strategic or the buyer’s valuation is low.

4.2 The Time-Shield Technique

The goal of the Time-Shield technique is to choose a w; that disin-
centivizes strategic buyers (Claim 2) but without harming truthful
but losing buyers’ utility (Claim 3).

The insight behind the technique is to choose w; > 0 to disincen-
tivize strategic behavior but in a way that guarantees no harm is
caused to truthful buyers that lose their allocation, b; = v; < p;(d).
In other words, choosing w; so the truthful buyer cannot lose util-
ity before ¢ + w;. The arbiter can do this because it knows a(l;),
the past bids, and the losing bid, so it can calculate the minimum
time at which b; would become competitive by simulating a future
sequence of bids that would make b; > p;(d). In other words, w; is
set up so the buyer would not have been able to win the allocation
earlier no matter if the original losing bid was truthful or not. We
demonstrate both claims next.

Claim 2: w; > 0 disincentivizes strategic behavior. The buyer’s
utility depends on winning an allocation within its deadline and
on the magnitude of the difference between the posting price and
the buyer’s private valuation. A buyer needs to win only one time
within the deadline. Let us denote the probability of winning any
one allocation as k, 0 > k > 1. The buyer’s probability of winning
an allocation is the same for any time period, and the buyer’s utility
is the same whether they win the allocation at the first or last
time period. Then, a buyer prefers to have more opportunities for
winning an allocation. When w; = 0, a strategic buyer has exactly
T; allocation opportunities. When a wait-period is set, w; > 0,
the number of opportunities reduces to T; — w;. Hence, waiting
disincentivizes strategic bids because buyers prefer having more
allocation opportunities.

There is another disincentive property of wait-period. While
without wait-period buyers know exactly their allocation oppor-
tunities, T;, when w; > 0, their opportunities are strictly reduced,
but they do not know how much because w; is private to the arbiter.
In particular, the buyer does not know if w; > T;, which would
yield u; = 0. This additional uncertainty plays an important role in
neutralizing strategic behavior as we demonstrate empirically in
the evaluation section.

Claim 3: Time-Shield does not reduce truthful buyers’ util-
ity. We consider two scenarios, b; > p;(d) (winning, X; = 1), and
b; < pt(d) (losing, X; = 0). When X; = 1, w; = 0, so utility is not
affected by Time-Shield. The interesting case is when X; = 0. In
this case, w; > 0. u; depends on w;, p;(d), and X;:



o if w; > T;, then u; = 0, because the buyer will not bid after
the deadline. In this case, the buyer’s utility is harmed only if
A’ € [t, T;] | pr(d) < bj, i.e., if there was an opportunity for the
buyer to win the allocation in the range [, T;]. In other words, the
buyer could have won the allocation but w; reduced its chances.
If the above condition is false, then, despite missing the deadline,
the buyer would have never won the allocation by bidding b;, so
its utility would not be harmed.

o if w; < Tj,and 3¢’ € [t,w;] | pr(d) < bj, then this reduces the
buyer’s allocation opportunities. However, in this case, the buyer
has more opportunities to bid in [w;, T;], so it can still win the
allocation and therefore we cannot determine its u; yet.

Then, as long as 7t’ € [t, w;] | pr(d) < b;, Time-Shield does not
harm the buyer’s utility. By design, Time-Shield chooses w; so that
there cannot be prices lower than the losing bid within the wait-
period. Therefore, Time-Shield does not affect buyer’s utility. We
describe how to choose w; in Section 6 because it requires details
of the pricing algorithm.

5 UNCERTAINTY-SHIELD PROTECTION

In this section, we describe Uncertainty-Shield, a technique to
protect data markets against two challenges: i) buyers who guess p
based on the wait time, w;, as determined by Time-Shield; and ii)
boundedly-rational behavior.

Guessing prices based on w;. According to Time-Shield, a losing
buyer will wait w; before bidding again. Buyers will learn w; once
they are allowed to bid again and they know w; is set based on
a(l_;): this leaks information about the price at the time of the bid,
pr-1(d).

Boundedly-Rational Behavior. Consider a buyer who is about
to bid for a dataset truthfully, b; = v;. Just before submitting its bid,
the buyer learns about the price at which such a dataset was sold
moments ago, p;—1. Armed with the price information and knowing
the arbiter sets prices based on past bids, the buyer may guess that
the current price will be similar to the leaked price, p;(d) ~ p;—1(d).
If the buyer was originally bidding truthfully, and above the price,
b; > p¢(d), should the buyer change its bid in light of the new
information? In particular, should the buyer lower its bid so that:
bi ~ pr-1(d)?

The answer is no because the buyer’s utility is determined by
its private valuation and the posting price that the buyer pays, and
not the actual bid. Lowering the bid only risks losing the allocation
when b; < p;(d) and hence harming the buyer’s utility. Still, we
observe empirically that some buyers change their bid. Unfortu-
nately, these lower bids will contribute to future posting prices,
hence harming the market revenue.

Uncertainty-Shield. The crux of the problem is that buyers as-
sume p;(d) = p;—1(d) because they know prices are set based on
past bids, and they do not realize that what they bid is not what they
pay’. Uncertainty-Shield protects against this behavior by adding
noise to the posting price p;(d) after every epoch. This increased
price uncertainty tames buyers’ non-rational behavior and protects

SPrevious research has observed that the additional cognitive effort of understanding
that "what you bid is not what you pay’ makes certain auction formats harder to
understand to participants [38].

against buyers guessing the price based on w; because it breaks the
link between price and past bids.

The protective effect of adding noise to the posting price is
at odds with the update algorithm’s goal. For example, too much
noise will effectively randomize prices completely, hence losing
the learning effect from the algorithm and harming revenue as
a consequence. The main challenge of Uncertainty-Shield is to
include this noise to endow the market with this protection while
maintaining performance guarantees on the revenue raised by the
market. We explain how to achieve this in the next section.

6 PUTTING ALL TOGETHER: A PRICING
ALGORITHM FOR DATA MARKETS

In this section, we present a pricing algorithm that combines Epoch-
Shield, Time-Shield, and Uncertainty-Shield to protect data markets
from strategic buyers (Section 6.2). We then discuss an alternative
design that uses differential privacy (Section 6.3). We start by sum-
marizing the requirements of the algorithm.

6.1 Summary of Requirements

R1. Online pricing. Given an incoming stream of bids, b, whose
distribution is unknown and changing, the pricing algorithm must
choose and adapt ps(d) in order to maximize revenue using Epoch-
Shield to protect against low bids.

R2. Making losing buyers wait. The pricing algorithm must com-
pute a wait-period, w, for every losing buyer to exhaust their pa-
tience and disincentivize strategic behavior. This is the Time-Shield
protection technique.

R3. Controlling Uncertainty. The price, p;(d) must be set with
sufficient randomness that buyers who learn about leaks are dis-
incentivized to adjust their bids. This is the Uncertainty-Shield
protection technique.

6.2 The Pricing Algorithm

The overarching goal of the algorithm is to choose a posting price
that maximizes revenue before knowing the future bids but using
knowledge of past bids. This problem is an online decision mak-
ing process [12], where the decision is to choose an expert, and
experts correspond to candidate posting prices. To select an expert
in an online manner the algorithm maintains a list of candidate
posting prices and assigns weights that are updated every epoch,
after observing the performance of each expert/posting price.
We choose to update the weights using the multiplicative weights
rule, which has the following desirable features:
o It delivers strong performance guarantees. The revenue obtained
using MW is the one obtained by the best expert in hindsight [6].
o It permits us to compute the Wait-Period required by Time-Shield
because we understand how price changes given a stream of bids.
e It models weights as a probability distribution and chooses a
weight according to that distribution. This naturally incorpo-
rates the randomization demanded by Uncertainty-Shield while
maintaining performance guarantees.

6.2.1 Allocation and Update Logic. At a high level, the algorithm
must: i) execute the allocation function for each incoming bid based



Algorithm 1: Data Market Pricing Algorithm

input : I; input bid stream,
P, collection of posting
price candidates,

// Update price when epoch
is complete
13 def update_price(epoch, E, p;,

E, epoch size, MW):
// Initialize 14 if length(epoch) != E then
multiplicative weights 15 | return;
// We indicate p;(d) as p; 16 opt_r « optimal(epoch);
1 MW « init(P); 17 revenue « r(epoch, p;);
2 pr < MW.draw_price(); 18 for y € MW.experts do
3 epoch « []; 19 alt_r « r(epoch, y.p);
s forb; € B do 20 c; « (revenue - alt_r) /
5 epoch.add(b;); _opt.r;
// Process bid 21 if ¢; > 0 then .
6 if b; > p; then 22 L xwewl-e)
xi— 1; 23 else if ¢; < 0 then
8 L handle_payment(); 24 [ xwewl+e) <
9 else if b; < p; then 25 pr — MW.draw_price();
10 xi —0; 26 return p;;
11 w; < com- -
pute_wait_period(MW,
bi);

12 | pr < update_price();

on the current posting price, p;(d); ii) group incoming bids per
epoch, and update p;(d) after every epoch is done. The algorithm
chooses a price that maximizes revenue before seeing future bids
based on past bids while implementing the Epoch- (requirement
R1), Uncertainty- (R3), and Time-Shield (R3) techniques.

Initializing algorithm. Algorithm 1 expects a stream of bids, b,
and is configured with a set of posting prices, P® that we assume
fixed for the sake of presentation, and an epoch size E. This is
shown in the input parameters of Algorithm 1. The algorithm then
initializes the experts’ weights for each p = 1 Vp € P, line 1. Each
expert is referred to as y, its weight as y.w and its value, the posting
price, as y.p. After initialization, an initial posting price, p;(d) is
chosen when processing the current epoch.

Processing incoming bids. For each incoming bid b; (line 4), the
algorithm includes the bid in the current epoch, and then compares
the bid with p;7 (line 6) and makes an allocation decision. When the
allocation decision is positive, the next step is to handle the payment
(line 8). If the allocation is negative, the Time-Shield technique kicks
in to compute the wait period, w; (as explained in Section 6.2.2).
Note that after receiving a bid, the algorithm can immediately
decide whether to allocate and handle the next steps because a
posting price has been chosen a priori: buyers do not need to wait,
and hence their utility is not harmed.

Updating posting prices. We use MW to update the experts’
weights (i.e., the posting prices) adaptively, after every epoch. After
processing each bid, the algorithm checks when an epoch is com-
pleted. An epoch is completed when the number of bids it contains
equals E, (see line 14). If the epoch is finished, the algorithm com-
putes the cost of the current p; and uses it to update the weights of
all other experts before choosing the next p;. This addresses R1.

%each posting price corresponds to an expert in MW
"Note we use the notation p; in the algorithm because the dataset it refers to, d, is
implicit in the execution context.

The cost is measured as the relative revenue difference. This is
the cost that each expert would have incurred had it been chosen
(line 19), compared to the chosen p; (line 17), and normalized by
the optimal posting price, which is computed in line 16 after all
bids within the epoch are known. With a cost per expert, their
weights are updated following the MW rule, lines 21 to 24. Once all
expert weights have been updated, the algorithm chooses a new p;
(line 25), which becomes the posting price for the incoming epoch.

Choosing the next posting price. The function draw() (line 25)
does not select p; deterministically. Instead, it follows the multi-
plicative weights rule. It interprets the experts’ weights as a prob-
ability distribution and samples p; based on that distribution, i.e.,
experts with higher weights are more likely to be selected. This,
in effect, adds the uncertainty required by Uncertainty-Shield (ad-
dressing R3) while maintaining strong performance guarantees. In
particular, the multiplicative weights rule ensures that the expected
penalty, in our case in revenue, is not much worse than that of the
best expert in hindsight. The proof is in the original work [6].

6.2.2 compute_wait_period and MW. When X;(b;, p;(d)) = 0, the
algorithm computes the wait-period, w;, that indicates the number
of time periods the buyer will need to wait before bidding again
(addressing R2). w; indicates the time needed before b; would
become competitive and is computed so that truthful losing buyers
do not lose utility as seen in Section 4.2.

In the context of the MW-based pricing algorithm, a bid is com-
petitive if it is close to the most likely posting price, i.e., the posting
price with the highest weight. The algorithm simulates the se-
quence of future bids at which b; would become competitive, and
measures the number of bids necessary to achieve that. Although
in reality a bid may never become competitive, the sequence of
bids chosen by the algorithm are the best bet for the buyer. We con-
sider two strategies to replay future bids and hence to implement
compute_wait_period():

e Bound. The algorithm assumes that the sequence of future bids
contains bids with the minimum possible value, guaranteeing
that the number of iterations until b; converges is minimum, i.e.,
the experts’ weights change faster because the lowest bids incur
the highest costs. w;, computed this way, is the earliest time at
which b; can win any allocation, so even if the buyer were to bid
earlier, it would not win.

Stable. In this strategy, the algorithm assumes the incoming bids
have all values equal to b;. This strategy gives a more conserva-
tive estimate of when the bid may become competitive.

The goal of Time-Shield is to guarantee that if b; was truthful,
the buyer would not lose utility when compared to a non-waiting
mechanism; if b; never becomes competitive, then waiting does
not change the buyer’s utility. For this reason, both the Bound and
Stable strategies are optimistic on the side of the buyer. In our
market model, buyers can bid once per time period ¢ € [0, ...). Then,
given the incoming rate of bids, which depends on the number of
buyers at a given time, the algorithm computes the time periods
within which the buyer cannot bid; the number of time periods
corresponds to w;.



6.3 The Differential Privacy Angle

We discuss an alternative implementation of Epoch-Shield and
Uncertainty-Shield based on differential privacy [24]. A low bid is
harmful when it has a significant effect on the revenue raised, which
in turn depends on the price at which the dataset is sold. The role of
an epoch is to smooth out the influence of single bids. Given a bid,
bj, this intuition can be expressed as follows, pr(g)/pr(gﬂbi) <€,
which corresponds to the definition of differential privacy (DP).
The numerator and denominator differ in one value, b;, and the
ratio of the prices must be lower than a parameter, €, which in the
context of DP corresponds to the privacy, and in the context of
Epoch-Shield corresponds to the degree of protection: the lower e
is, the more protected the market is against low bids.

The arbiter would then collect bids from buyers and compute
a differentially private version of the price; one that by definition
is not affected much by any single bid. This could be done, for
example, using the Laplace mechanism [24]. The arbiter would
then calculate the price as a() + Y, where Y ~ Lap(A). Lap is the
Laplacian distribution, and A = S(a)/e. The protection (privacy)
parameter, €, and the sensitivity of the allocation function are used
to parameterize the distribution from where noise is drawn. Finally,
the sensitivity is defined as S(a) = max |a(l;1) - a(b})h. When a is
defined as in Equation 2, then the value is S(a) = max (b) — min (b),
i.e., the difference between the highest and lowest possible bids.

Alternative implementations. We believe the MW-based algo-
rithm is conceptually and practically simpler to implement than a
market based on the Laplace-mechanism because the MW-based al-
gorithm does not need knowledge about the highest and lowest bids,
and can incorporate the Time-Shield technique in a straightforward
way, as explained above.

Note on related work. Differential privacy has been used to en-
dow an auction mechanism with protection against strategic buy-
ers [2], although in an auction format not compatible with data
markets. The connection between differential privacy and mecha-
nism design has been made before [30, 46].

7 EVALUATION

In this section, we present the results of a user study that we con-
ducted to demonstrate the need for the protection techniques we
have presented and their effectiveness in mitigating the effect of
strategic buyers (Section 7.1). Later, in Section 7.2 we present the
results of extensive simulations that describe the performance char-
acteristics of our techniques.

7.1 Are Protection Techniques Effective?

We answer the following 5 research questions using a user study.

We first show the bid distribution generated by participants of a

data market.

e RQ1: Do buyers bid truthfully in the data market?, i.e., will
buyers strategize?

We demonstrate the boundedly-rational behavior of participants
and hence the need for Uncertainty-Shield (RQ2) and then we show
the protection effect of Uncertainty-Shield in RQ3:
¢ RQ2: Do price leakages drive buyers’ bids down when they

know prices are set based on past bids?

e RQ3:Does Uncertainty-Shield help to preserve bids despite
leakages?
We demonstrate that buyers will strategize over time and hence
the need for Time-Shield (RQ4) and then we demonstrate the ef-
fectiveness of Time-Shield in RQ5:

e RQ4: Do buyers act strategically when they bid over sev-
eral rounds?, i.e., will buyers strategize over time?

e RQ5: Does Time-Shield make buyers bid truthfully even
in multi-round sessions?

To answer these questions, we design and conduct an IRB-approved
user study involving human subjects, which we describe next.

Setting. The study describes a market environment where buyers
(i.e., the participants) work as data traders for a company. Partic-
ipants’ goal is to obtain the datasets their company requests. As
described in this paper, their utility function is the difference be-
tween their company’s valuation and what they pay for the dataset.
In each scenario, we tell participants how much their company
values a dataset, v;. Then, participants bid to obtain the dataset.
The valid bid range is [0, 2 * v;], so participants can bid higher than
their valuation (non-rational), their valuation (truthful), or lower
than their valuation. Participants use a slider to choose the bid.

Money and real stakes. Participants do not bid with real money.
This introduces a potential threat. Since money is not real, they
may value it less and that would lead to unnecessarily high bids
or worse, random behavior because participants are not vested in
the task at hand. However, none of these threats show up in our
study results. The results demonstrate that participants indeed aim
to maximize their utility i.e., they aim to get the best deal for their
company as described in the scenario above. For this reason, and
despite the threat of validity, we believe the user study motivates
well the challenges and demonstrates the value of the contributions
made in the paper.

Recruitment and data collection. We recruited 53 participants
online out of which 50 completed the study and were compensated.
Each participant signs a consent form that clearly describes the
content and purpose of the study. We used Prolific [57] to recruit
participants for 3 reasons.

First, Prolific’s participants have a high approval rate, measured
as the ratio between successfully completed studies and the total
returned studies, which indicates participants are engaged and
committed to complete the study. Second, Prolific is based in Europe
and hence subject to GDPR [29], which means participants can
request their data to be removed. Third, Prolific uses a wide variety
of demographic variables that we use to select the sample of target
participants to reduce the threats to the external validity of our
study, as explained later.

We did not collect from participants any identifier or other PII
information. We did not collect their IP address or other informa-
tion that may disclose their location. We only collect participants’
answers to the study questions, which we store in a secure enclave
and we analyze to present aggregated results as part of this study.

Methods. To eliminate subject-specific differences, we conduct a
within-subjects study: each participant answers all questions. We
randomize question order to avoid ordering effects. The study starts
with the answer of RQ1 as a baseline over which we introduce



interventions to understand the effect of leakages, price random-
ization, multiple-round bids, and the Time-Shield technique. We
measure each intervention’s effect by comparing the results of
different questions to each other as we indicate in the next section.

When analyzing results, we use the statistical testing framework.
We formulate the null and alternative hypothesis, measure aggre-
gate statistics, and use a statistical test to see if we can reject the
null hypothesis. When choosing a test we take into consideration
two characteristics of our data and study design, respectively. First,
the collected data does not follow a normal distribution. We reject
this null hypothesis using the Shapiro’s [14], and D’Agostino and
Pearson’s test [20]. This characteristic calls for a nonparametric test.
Because our study is within-subjects, when comparing questions,
we are comparing paired samples. Therefore, we use the Wilcoxon
signed-rank test [56], and indicate any variations.

7.1.1  Research Questions and Results. RQ1: Do buyers bid truth-
fully in the data market? We consider two scenarios. In the first,
the company values the dataset at 500, and in the second at 1500.
We ask participants to submit their bids in each case. The results in
Table 1 show that both the average and median bids are close to the
truthful bid, and the standard deviation is not zero. The complete
distribution of bids is shown in Figures 2a and 2b labeled as No-
leak. The figures show that the distribution of bids is concentrated
near the truthful bid, but some participants bid below, and some
bid above. We use a 1-sample Wilcoxon test to test the alternative
hypothesis that the median of the sample is different than the me-
dian of the distribution, and obtain p > 0.3 in both price cases: we
cannot reject the null hypothesis, so we conclude the median of
the sample is the median of the distribution. The results show that
not every participant bids truthfully, although the distribution of
participants bids nearly truthfully. This evidence is consistent with
extensive research in behavioral economics that demonstrates that
participants not always act rationally [39]. We do not attempt to
characterize why this behavior takes place but based on our pilot
tests, it is often due to ignorance, lack of attention, or unstated as-
sumptions participants make. We accept this behavior as the norm
in the wild and refer to the distribution of bids centered around the
truthful bid as near-truthful.

Mean | Std | Median | p-value
500 456 81.66 450 0.35
1500 | 1368 | 191.24 1350 0.32

Table 1: Statistics for RQ1

RQ2: Do price leakages drive buyers’ bids down when they
know prices are set based on past bids? We put the participants
in a position where before bidding they learn that the arbiter sets
prices based on past bids and they get access to the latest price set
by the arbiter. We then ask them to bid. Figures 2a and 2b show
the distribution of bids when participants do not know about the
leak (No-leak) and when they learn about the leak and know prices
are based on past bids, labeled Past. What the distributions of bids
show visually, that leakages cause a drop in bids, is confirmed by
the statistical test: we reject the null hypothesis and conclude that
participants do not behave rationally when they learn about leakages

and understand that prices are set based on previous bids. This is the
motivation for the Uncertaintiy-Shield protection technique.
RQ3: Does Uncertainty-Shield preserve prices despite leak-
ages? This is the same situation as before, but we tell participants
the arbiter sets prices randomly. The results are labeled in Figures 2a
and 2b with Random. The distribution of bids, in this case, is flatter
than in the case of No-leak and Past. Randomizing prices does not
preclude all participants from dropping their bids (p < 0.01), but
it ameliorates the problem significantly, p < 0.01. We conclude
that randomizing prices is an effective way of ameliorating the effects
of non-rational behavior. This demonstrates the effectiveness of
Uncertainty-Shield.

RQ4: Do buyers act strategically when they bid over several
rounds? In this case, participants can bid once per hour, and they
are given several hours to bid. If they bid and lose, they can bid again
as long as they have chances left. We ask them to write a bidding
plan with the sequence of bids they would submit. In this setting,
buyers act strategically by placing lower bids initially and bidding
near truthfully in their last chance. The results are presented in
Figure 2c, where the dataset price is 2000. The label NW-p25 shows
the 25th percentile of bids, NW-median the median, and NW-p75
the 75th percentile. We conducted a second experiment with price
600 and observed similar results. These results demonstrate that
buyers will act strategically to maximize their utility. This is the
motivation for the Time-Shield protection technique.

RQ5: Does Time-Shield make buyers bid truthfully even in
multiple-round sessions? This situation is the same as above.
However, we tell participants that if they bid and lose they may
need to wait an amount of time proportional to the difference
between the bid they made and the price set by the arbiter, i.e.,
we use Time-Shield. We explain that the consequence of this is
they may miss opportunities for bidding. The 25th, median and
75th percentiles are shown with W-p25, W-median, and W-p75,
respectively, in Figure 2c. We differentiate the last bid (hours 4
and 3 respectively) from the previous ones. Using Time-Shield
drives bids up, ameliorating the strategic behavior of participants,
who know they may lose the opportunity to acquire the dataset.
It does not fully make bids near-truthful, except for the last bid.
The difference in bids is statistically significant (p < 0.01) in all
hours except for the last one. The last hour is the last chance buyers
have to acquire the dataset, with and without Time-Shield, so in
this case, we observe, as expected, that bids are near-truthful in
both scenarios. The results show that Time-Shield helps disincentivize
buyers from strategizing, therefore driving bids up.

7.1.2  Threats to validity and limitations. External Validity. To
reduce spurious behavior from participants, we recruited those who
were familiar with trading environments, financial information,
who are currently part of the active population, whose minimum
degree of education is a graduate degree (Ma/MSc/MPhil/other),
and who consider their industry to be described as Finance.

Internal validity. We designed the study to minimize threats to
its internal validity:

Language. We recruited participants from the US and the UK whose
first language is English. We conducted a pilot test with 6 volunteers
who agreed to explain their interpretation of the questions aloud.
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Figure 2: Left: Distribution of bids without leaks (No leak), when participants learn about a leak and know prices are set based
on past bids (Past), and when prices are set randomly (Random). Center: Same as left but for price 1500. Right: Bids with (W)
and without (NW) Time-Shield for price 2000. Showing 25th (p-25), 50th (p-median), and 75th (p-75) percentiles.

This helped us hone the language to avoid ambiguity and make it
easier to understand.

Market understanding. There is a chance that participants do not
understand how the data market works or they forget essential
details while participating. After explaining the instructions, we
included a question to test the participants’ knowledge. When they
get the answer wrong (44% got the answer wrong the first time),
we offer an explanation and clarification of why that is the case.
We found that including examples helped participants to grasp
the mechanics quickly, so we included an example with the study
instructions, and we added it to a refresher that they had available
throughout the survey. In this way, participants could always go
back and read the instructions.

Price effect. The price magnitude may affect how participants bid.
To control for this, we include the above questions for different
prices that differ in one order of magnitude, and we randomize the
order in which we present different prices to different participants.
Learning effect. When participants learn about leakages (RQ2 and

RQ3), they are requested to provide their bid under two scenarios:
arbiter sets prices based on past bids and randomly. To control for
learning effects, we randomize the order of the questions.

7.2 Data Market Simulation

In this section, we study the performance implications of the protec-
tion techniques using simulation data [49]. We organize the section
around 3 research questions:
¢ RQ6: How does Epoch-Shield affect performance?
e RQ7: How does Uncertainty-Shield affect performance?
e RQ8: How does Time-Shield affect performance?

When measuring market performance, we use revenue and social
surplus: the aggregated utility across all buyers.

We complement these results with a comparison of pricing al-
gorithms and an exploration of strategic behavior. We start by
describing the data generation process.

7.2.1 Data Generation and Strategic Buyers. We run simulations
over time series of bids. Each point in the time series represents
the buyer and its bid. We generate time series according to an au-
toregressive model [5], which is common in econometrics. Because
each time series is generated randomly, we generate 100 random
time series of 250 points each for each experiment and present
aggregate results. In particular, we show the 1, 25, 50, 75, and 99
percentile in boxplots. All revenue and social surplus results are

normalized to the maximum value; this is because what matters is
the relative difference between configurations and not the absolute
value, which is an artifact of the range of bids chosen.

The time series generation process is governed by a parameter,
AR, that controls how much the value of a point in the time series
depends on previous values. We tried many different parameters®
and measured their effect on the normalized revenue for the optimal
posting price algorithm, Opt, and our pricing algorithm, MW, as
shown in Fig. 3a. We found out that the performance is not too
sensitive to this parameter. In the remainder of the evaluation, we
present results corresponding to AR = 0.1 because the results for
other values of AR are similar and do not show new insights. All our
code will be open sourced, so other researchers may try different
parametrizations of the generation process.

Generating strategic buyers. To simulate strategic buyers, we
transform the time series using a function that takes a triple <
PCT, B, H >. The triple describes the strategic buyers. PCT deter-
mines the ratio of buyers that act strategically. For each strategic
buyer, H is the horizon over which it bids, i.e., it corresponds to T;.
Finally, § € [0, 1] multiplies the buyer’s true valuation, v;, lower-
ing the bid; we use §§ to determine the value of the strategic bid,
with lower values leading to more aggressively low bids. PCT = 0
corresponds to the ideal scenario where all buyers are truthful.

7.2.2  RQ6: How does Epoch-Shield affect revenue and social surplus?
We want to study the protective effect of epoch size as a function
of PCT. In this experiment, strategic buyers bid the minimum over
a fixed horizon, H, unknown to the market arbiter.

Figures 3b and 3¢ show normalized revenue and social surplus,
respectively, as PCT (x axis) grows and for 5 different values of E.
In Fig. 3b when PCT= 0, corresponding to the truthful scenario,
we see how larger E leads to lower revenue, as expected. However,
the key is that, as PCT grows, smaller values of E lead to a revenue
collapse, while higher protection leads to the market maintaining
the performance. In particular, we see differences of 10x in this
experiment between different epoch sizes. The most interesting
insight of social surplus is that the performance for large epochs
remains similar across PCT values and does not drop with higher
protection. The protection offered by larger epoch sizes com-
pensates for the loss of revenue caused by strategic buyers
while maintaining the social surplus.

8We tried the following tuples (ar, o) = (0.1, 0.01), (0.5, 0.01), (0.9, 0.01), (0.999, 0.01)
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different epoch sizes as PCT increases. Right: Normalized social surplus of different epoch sizes as PCT increases.
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Figure 4: Left: Normalized revenue of MW versus MW-max, Random, and AdHoc for different epoch sizes. Center: Normalized
revenue for different § as PCT increases. Right: Normalized social surplus for different  as PCT increases.

7.2.3  RQ7: How does Uncertainty-Shield affect revenue? Uncertainty-
Shield tempers participant’s boundedly-rational behavior as shown
in RQ3. But by adding noise it interferes with the goal of raising
revenue. We use the multiplicative weights rule to select a random-
ized price, hence guaranteeing the revenue performance according
to the algorithm’s proof [6]. Here, we empirically demonstrate the
effect of adding noise using 3 baselines and our approach and show
the results in Fig. 4a (for a truthful scenario with f and H configured
as in the previous experiment).

MW, AdHoc, and Random all add noise to the price, while MW-
Max deterministically selects the price with the highest weight.
While MW-Max achieves higher revenue than the other baselines
it does not implement Uncertainty-Shield so when deployed in
the wild, it will suffer from the problems we demonstrated in RQ3.
Of the mechanisms that include noise and hence offer protection,
Random chooses prices completely at random, breaking any link
between price and past bids. The consequence is very poor perfor-
mance. AdHoc selects a price by sampling the neighborhood of the
price with the highest weight. Although this mechanism performs
much better than Random, it ignores the actual weights and hence
does not provide any performance guarantees. Finally, our imple-
mentation, MW performs best among the randomized baselines
and provides guarantees on the performance, demonstrating it is
an appropriate way of implementing Uncertainty-Shield.

We conclude the overhead of Uncertainty-Shield is small
and justified by its effectiveness in avoiding the harmful ef-
fects of non-rational behavior.

7.24  RQ8: How does Time-Shield affect revenue and social surplus?
In this experiment, we fix H as in the previous experiments and
choose E = 8, which has shown an adequate level of protection to
the market as previous experiments have shown. With this setting,

we seek to understand the effect that Time-Shield has on the data
market performance.

Fig. 4b and 4c show the normalized revenue and social surplus
of the market when f, the parameter used to set the strategic bid,
changes. As PCT grows, revenue lowers, as expected. When strate-
gic buyers bid the lowest possible, this harms the market the most
(this setting is referred to as min in the graphs). As  grows, strate-
gic bids resemble the truthful bid that corresponds to the original
private valuation, v;. Higher values of § lead to higher revenue, with
large differences as can be seen when PCT is > 0.7. The user study
of the previous section demonstrated that with a waiting technique
(Time-Shield), strategic buyers drive their bids up—equivalent to
higher f. For that reason, we conclude that Time-Shield prevents
the harmful effect on market revenue caused by buyers that
strategize over time and therefore improves market perfor-
mance. Besides, we know that in the presence of Time-Shield,
specific strategic buyers stop being strategic. This leads to higher
revenue as the figure shows—see lower values of PCT.

7.3 Pricing Algorithms and Strategic Bid Study

We complement the simulation results with a performance com-
parison of different algorithms, demonstrating that our choice of
algorithm outperforms other baselines (Section 7.3.1) and finish
with a study of the effects of different parameters that configure
strategic bids in Section 7.3.2.

7.3.1  Why not just using average or median? Update algorithms
such as average (avg), and median (p50), are susceptible to strategic
buyers, who know that a low bid always affects the price chosen
by the algorithm in a direction that is profitable for the buyer. In
addition, the avg and p50 performance are worse than our pricing
algorithm, MW, which builds on top of multiplicative weights and



therefore can adapt to unknown bid distributions better. Fig. 5a
shows the normalized revenue of the different update algorithms.
As PCT increases, the performance of avg and p50 drops dramati-
cally, affected by the low bids. In contrast, the performance of MW
remains close to the optimal, Opt, throughout the experiment.

7.3.2  How do strategic bids affect market performance? In this ex-
periment, we seek to understand the effect of H (labeled as horizon
in the graphs) as well as the magnitude of the strategic bid, 5, on
market performance. We produce heatmaps that show the normal-
ized revenue when these parameters change. We first conducted a
baseline experiment where PCT is 0.1. With so few strategic buy-
ers, we expect the normalized revenue not to drop much and the
baseline confirms this is the case.

Fig. 5b and Fig. 5¢ show heatmaps when PCT is 0.5 and 0.9 per-
cent respectively. The larger the horizon and lower the strategic bid,
the worse the revenue. For 50% and 100%, the normalized revenue is
as low as 0.1 and 0.2. Importantly, higher f leads to higher revenues
even when horizons are large—this reinforces why Time-Shield is
an effective market protection.

8 EX-POST ALGORITHM DISCUSSION
8.1 Ex-Post Bidding for Experience Goods

We have considered so far cases where buyers know v;. When
buyers do not know v;, they cannot bid without risking to pay
more than what the dataset is worth to them. Buyers may not know
how to value a dataset before using it, for example, when engaging
in exploratory tasks.

The market could allocate datasets to buyers and then accept
payments after buyers have used the datasets and know how to
value them. Arrow’s information paradox [7] means that buyers do
not have an incentive to report the true valuation after accessing
the dataset. We discuss how the Time-Shield technique could be
adapted to this ex-post scenario.

8.2 Truthful Ex-Post Pricing

Many buyers buy more than one dataset over time, dy, ..., dy, and
they are interested in maximizing their total utility, >N u;(dy,).
Ideally, the revenue raised by the market is the same in the ex-ante
(i.e., when buyers know their v;) and ex-post scenario. The key idea
to elicit truthful payments from buyers is to penalize them with
Time-Shield the next time they bid for a dataset.

Concretely, after a buyer sends a payment for a dataset it has
already used, the arbiter compares the payment, P(d;), with the
posting price associated with d; at the time ¢ of the dataset allo-
cation, pg = ps(d1). If P(d1) > pa, then this corresponds to a case
where the buyer did not cause any revenue loss, so the arbiter sim-
ply collects p,. When P(d;) < pg, then the arbiter collects P(d;)
and then uses the Time-Shield technique in the following way.
It computes w; based on the difference between p, — P(d;) and
then makes the buyer wait the next time it bids for another dataset,
dy. Because buyers seek to maximize their utility over time, the
prospect of having to wait later is a deterrent to bid untruthfully.
What about truthful losing buyers. Buyers may bid truthfully

and still lose, in which case they should not be penalized. The
arbiter interprets a low payment as a sign that the buyer is not

ready to exploit the dataset—that is why their valuation is lower
than the market price. w; is computed as usual and applies to the
next dataset. The buyer does not lose utility because they would
not have won the dataset in the first place.

Gaming the market. To reduce risk, the ex-post algorithm should
be activated only for returning buyers who have bought several
datasets in the past and are expected to continue doing so, e.g.,
Chief Data Officers, and data hunters. Also, the ex-post algorithm
may be activated only for specific datasets, for example, excluding
high-value ones, hence bounding the potential revenue loss.
Risk-seeking buyers may bid for low-value datasets immediately
after being assigned a wait-period, expecting their penalty will be
consumed waiting for the low-period dataset and before they need
to bid for a dataset they really want in the future. Extending the
wait-period when they bid for any dataset may serve as a deterrent.

8.3 Balancing Ex-Post Balance

In ex-ante scenarios, the revenue balance (payments minus data
value) is zero because data is only allocated when the payment is
above the posting price. In ex-post scenarios, revenue may become
negative after buyers pay below market price. This may deteriorate
market performance, so the ex-post option should be deactivated
for buyers whose balance is above a threshold.

To recover access to the ex-post option after losing it, buyers
must pay the balance difference. The arbiter cannot tell buyers
directly the magnitude of the difference because that is equivalent
to leaking prices. Instead, on subsequent bids, arbiters pay the
dataset price plus a fraction of their revenue balance. The arbiter
does not release the magnitude of the fraction. Then, the revenue
balance is eventually zero.

9 RELATED WORK

Although there is ample research in the theoretical design of data
markets [4, 48], they do not explicitly target participants that strate-
gize over time, and participants will strategize over time in data
markets as the user study demonstrates. Dynamic mechanism de-
sign [18, 54] and repeated ad-auctions [22, 23] deal with strategic
participants over time. Still, they do not target data market scenar-
ios, e.g., ad space is rival, unlike data, that can be sold infinite times
to many people. Query pricing work [15, 41] focuses on pricing
queries over datasets for which a price has been set, but it does not
offer a solution to finding the price of datasets in the first place.
More importantly, there is an increasing number of work on data
markets in the data management community for different kinds of
models [44, 45]. Our work contributes to this growing area by bring-
ing attention to the need for protecting data markets from strategic
participants and proposing techniques to deal with strategic bueyrs.

Mechanism and Market Design. Selling information. There is a
rich literature in auction and mechanism design for selling infor-
mation [9], even in the presence of privacy constraints [31]. More
recent work focuses on the unique characteristics of data as an as-
set [47] and on its characteristics. Our work focuses mainly on the
kinds of online data marketplaces we see raising today [8, 21, 62, 63],
and on providing techniques to protect against strategic behavior.
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Posting price. Posting price mechanisms for non-rivalry goods
were used in the context of digital auctions [32, 33]. In this work,
buyers bid exactly once and after the good is allocated no more
bids are accepted. These mechanisms are designed for digital goods
such as Netflix and Spotify, and not for markets of datasets, where
streaming buyers strategize over time. Online learning has been
used to choose posting prices [13, 40]. The emphasis of this work
is to design high-performance online mechanisms. We focus on
protecting markets against strategic buyers.

More recently, in the context of ad auctions, some work has
made an explicit connection between posting price mechanisms
and differential privacy [2] in order to protect the mechanism from
overfitting to low bids. This paper focuses on data markets, where
the good is freely replicable, unlike ad space, which is finite.

Dynamic mechanism design and revenue management. The
fields of dynamic mechanism design [54] and revenue manage-
ment [17, 18] consider strategic participants over time. The first
often assumes buyers’ value distribution is known. The second
assumes goods are finite.

Uncertainty-Shield. Some work focuses on mechanism design in
the presence of boundedly rational behavior [25]. Obvious strategy-
proof mechanisms [10, 43] may ameliorate the boundedly-rational
behavior we observed empirically and that may be associated with
the complexity of the mechanisms. This work can complement the
Uncertainty-Shield technique we propose here, which is otherwise
simpler to incorporate in the algorithm.

Ex-post. There is work focuses on pricing information before the
private value is known, whether by learning it on-the-fly [26],
or by using tools from contract theory [51]. This research line
complements the ex-post technique presented in this paper, which
has been designed to be compatible with the pricing algorithm.

Data Markets. Data Markets and Data Management Research.
The database community has produced work on data markets, with
surveys of marketplaces [55, 59], vision papers such as DMMS [27]
and Anylog [1]. The query pricing line of work [15, 16, 41] focuses
on pricing a query over relational data while avoiding arbitrage
opportunities. This line of work assumes relations have a set price,
while our work complements it by focusing on the problem of
finding that price in the first place.

A related problem the database community has tackled is this:
given a function that associates a machine learning model’s price
with its accuracy, how to allocate the raised revenue to those who
contributed data in the first place. Proposed solutions focus on

adapting the Shapley value [36, 60] to this setting. Our contributions
focus on pricing datasets, complementing this line of work.

Dealer [45] presents an end-to-end market design for machine
learning models. Its main focus is on an arbitrage-free pricing
algorithm and on revenue allocation. Our protection techniques
can endow Dealer with protection against strategic buyer behavior.

A ML model fine-tuning market approach is presented in [44].
The paper proposes algorithmic contributions to navigate an ex-
ploration/exploitation tradeoff and obtain records that improve the
target accuracy of a model the most given a target budget. If the
techniques presented in [44] were implemented as part of a mar-
ket, then the approach presented in our paper could be adapted to
protect that market.

Theoretical Data Markets. The algorithmic marketplace [4] of-
fers a model where the asset consists of ML models and where 1
buyer and 1 seller participate at a time. The emphasis of this work is
on the modeling aspects and in a sampling method to speed up the
computation of Shapley value, used for revenue allocation. More
similar to our data market model is this work [48], which considers
streaming buyers and sellers. Unlike them, we focus on studying
how strategic buyers game the market and provide mechanisms
to protect pricing algorithms from non-rational behavior. Finally,
other work [22, 23] has studied the problem of dealing with strate-
gic buyers that bid over time by providing truthful mechanisms,
but their setting is ad auctions and not data markets.

10 CONCLUSION

The data management community has much to contribute to the
practical design and implementation of data markets. This paper has
brought attention to the need for protecting data markets from the
strategic behavior that humans will introduce. The model presented
in this paper is sufficiently general to represent many different types
of data markets. The paper contributed 3 protection techniques and
their integration into a pricing algorithm that we have evaluated
extensively through simulations. The user study and simulations
demonstrated the viability of these 3 techniques. All in all, the paper
offered a first step towards practical data markets.
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