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ABSTRACT
Recent data search platforms use ML task-based utility measures

rather than metadata-based keywords, to search large dataset cor-

pora. Requesters submit a training dataset, and these platforms

search for augmentations—join or union-compatible datasets—that,

when used to augment the requester’s dataset, most improve model

(e.g., linear regression) performance. Although effective, providers

that manage personally identifiable data demand differential pri-

vacy (DP) guarantees before granting these platforms data access.

Unfortunately, making data search differentially private is nontriv-

ial, as a single search can involve training and evaluating datasets

hundreds or thousands of times, quickly depleting privacy budgets.

We present Saibot, a differentially private data search platform

that employs Factorized Privacy Mechanism (FPM), a novel DP
mechanism, to calculate sufficient semi-ring statistics for ML over

different combinations of datasets. These statistics are privatized

once, and can be freely reused for the search. This allows Saibot to
scale to arbitrary numbers of datasets and requests, while minimiz-

ing the amount that DP noise affects search results. We optimize

the sensitivity of FPM for common augmentation operations, and

analyze its properties with respect to linear regression. Specifically,

we develop an unbiased estimator for many-to-many joins, prove

its bounds, and develop an optimization to redistribute DP noise to

minimize the impact on the model. Our evaluation on a real-world

dataset corpus of 329 datasets demonstrates that Saibot can return

augmentations that achieve model accuracy within 50−90% of non-

private search, while the leading alternative DP mechanisms (TPM,
APM, shuffling) are several orders of magnitude worse.

PVLDB Reference Format:
Zezhou Huang, Jiaxiang Liu, Daniel Gbenga Alabi, Raul Castro Fernandez,

and Eugene Wu. Saibot: A Differentially Private Data Search Platform.

PVLDB, 16(11): XXX-XXX, 2023.

doi:XX.XX/XXX.XX

PVLDB Availability Tag:
The source code of this research paper has been made publicly available at

https://github.com/cudbg/Saibot.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:XX.XX/XXX.XX

1 INTRODUCTION
Augmenting training data with additional samples or features can

significantly enhance ML performance [50]. However, sourcing

such data in large corpora—public portals [10, 11], or enterprise

data warehouses—is a complex task. To address this, a new form

of data search platform [19, 34, 43, 45, 51] is emerging, wherein a

requester submits a search request comprising training and test-

ing datasets for augmentation. The platform then finds provider

datasets that augment the training dataset in a way that improves

utility (e.g., ML performance). This involves using a data discov-

ery tool [17, 29] to locate a set of union- or join-compatible tables

(augmentations), augmenting the training set with each candidate,

and then retraining and evaluating the model to assess its utility.
The augmentations are subsequently ranked by utility. Platforms

largely differ in the discovery tool procedure, the models they sup-

port, and how they accelerate model retraining and evaluation.

Recent works [18, 34, 51] suggest that using linear regression as a

model proxy provides a good balance of search quality and runtime.

Unfortunately, privacy is a major barrier to sharing for many

potential data providers and requesters with sensitive data (e.g.,

personally identifiable information (PII), and protected health in-

formation (PHI)). In these cases, providers are legally obligated to

prevent personal data leakage [6, 7, 9]. Rather than prohibit access

outright, differential privacy (DP) [22] supports data analysis on
sensitive data while bounding the degree of privacy loss based on

the budget 𝜖 set by the data provider. Each query on the dataset adds

noise to the results, inversely proportional to the budget consumed;

when 𝜖 = 0, the dataset becomes inaccessible.

Ideally, a differentially private data search platform would let

providers and requesters set privacy budgets for their datasets, and

enforce these budgets as new datasets and requests arrive. More-

over, since the platform is often a third-party service that may not

be trusted by data providers (and the individuals they collect data

from), it should not have access to raw data. Unfortunately, inte-

grating DP with data search platforms is non-trivial. To illustrate,

Figure 1 shows where existing mechanisms would add noise in a

two-level data-sharing architecture that matches many real-world

settings. In this architecture, individuals (e.g., patients) generate

sensitive data aggregated by providers/requesters (e.g., hospitals),

and the search platform further aggregates their datasets.

Global DP (GDP) is a DP definition widely used by private DBM-

Ses [36, 40, 61], where the employed mechanisms add noise after

executing, e.g., a query over private data by a trusted central DBMS.

However, when applied to data search, previous GDP mechanisms

need to “split the budget” across every candidate augmentation on
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Figure 1: Summary of DP-mechanisms under various trust
models in a standard data sharing architecture: Provider-
s/requesters collect data from individuals, and the search
platform aggregates data from providers/requesters. At the
extremes, mechanisms for local models introduce noise to in-
dividual tuples, whereas naivemechanisms for globalmodels
add noise to query results through a trusted 2

𝑛𝑑 -level aggre-
gator. Mechanisms for the shuffle model introduce a shuffler
at a point of aggregation (either at the 1𝑠𝑡 -level (Shuffle-1)
or the 2𝑛𝑑 -level (Shuffle-2)). In contrast, Saibot adds noise
to sufficient statistics computed by providers/requesters.

every request. The budget ends up being so small that the noise

drowns any signal in the data. Further, their trust model requires

the search platform, acting as the central aggregator, to be trusted,

which is challenging since it is a third-party service. To address this,

mechanisms for Local DP (LDP) (e.g., randomized response [20, 27])

eliminate the need for a trusted data curator by privatizing individ-

ual tuples. Nevertheless, the noise required for these mechanisms

can be quite large, potentially compromising data utility [60]. Shuf-

fling [26, 28] is a mechanism for an intermediate trust model that,

instead of relying on a trusted central aggregator, requires trust in

a shuffler. After privatizing tuples (using mechanisms for LDP), the
shuffler shuffles the primary keys of tuples during aggregation to

disassociate them from individuals; this "amplifies privacy" by al-

lowing each tuple to have less noise applied. Variation Shuffle-1
shuffles at the provider/requester level but requires considerable

noise for small datasets; Shuffle-2 shuffles within the search

platform but needs to trust the platform. An alternative to shuffling,

widely used by federated ML [54, 55, 60, 65], is to let providers/re-

questers iteratively compute and privatize model gradients locally,

and let an untrusted aggregator compute the final model. However,

these gradients are specific to a single augmentation’s model, so

the budget is still split across all candidate augmentations.

Is it possible for a DP search platform to return search results of

comparable quality to non-private search, and for the platform to

scale to many datasets and requests?We are motivated by the recent

data search platform Kitana [34], which uses semi-ring aggregation

to quickly evaluate a candidate augmentation’s utility on a linear

regression model without materializing the augmented table and

fully retraining it. These semi-rings can be computed for each

dataset offline, and Kitana only needs these semi-rings to evaluate

a candidate augmentation in ≈1−5𝑚𝑠 , independent of the dataset
size. Our main observation is that these precomputed semi-rings also
serve as ideal intermediates for DP, as they help directly estimate
model parameters, can be combined over joins and unions, and can
be freely reused once made private.

This paper presents Saibot, a differentially private data search

platform for tabular datasets that scales to unlimited datasets and

requests, returns results comparable to non-private search, and

doesn’t need to be trusted. Data providers upload their privatized

datasets to the platform. When a requester submits a privatized

training dataset, the platform searches for the best combinations of

privatized datasets which, when augmented with the requester’s

dataset, most improve the accuracy of a linear regression model. For

the trust model, Saibot assumes that the 1
𝑠𝑡
-level aggregators are

trusted (unlike the local model) but the 2
𝑛𝑑

-level aggregators (i.e.,

search platform) are not (unlike global model). In practice, regula-

tions [6–9] mandate that the 1
𝑠𝑡
-level aggregators (e.g., healthcare

providers, schools) securely store individual data. Once Saibot iden-
tifies predictive augmentations using differentially private proxy

models (linear regression), it can directly return the private proxy

models, although they may not be complex enough for some re-

questers. To address this, Saibot can be integrated within a larger

differentially private federated ML system [55, 58, 60, 65] to train

more advanced models, like deep neural networks through differ-

entially private gradient descent, on the identified augmentations.

Our key innovation is a new DPmechanism called Factorized Pri-
vacy Mechanism (FPM), where each requester or provider computes

and privatizes sufficient statistics on their own datasets based on

their privacy requirements. These sufficient statistics provide high

utility, can be freely reused for ML over different augmentations,

and only require the search platform to store privatized datasets.

FPM satisfies GDP, but the randomized algorithm is applied by the

1
𝑠𝑡
-level aggregators rather than the 2

𝑛𝑑
-level ones. Note that FPM

has broader applications, not only for the data search but also for

more general differentially private factorized learning.

The main algorithmic challenge FPM solves is to design
privatized sufficient statistics for ML that are composable
to support various join and union augmentations. Previous
works have applied DP to sufficient statistics for privatized linear

regression [59] and GLM [35, 41], but these sufficient statistics can

be used for only a single dataset. Our key insight is to design these

sufficient statistics as a semi-ring [30], which includes addition and

multiplication operators for union and join. Although sufficient

semi-ring statistics have been utilized for ML [52, 53] over joins,

we are the first to explore their application in a DP setting. The

results of our real-world experiments indicate that FPM is capable

of identifying augmentations that achieve an average 𝑟2 score of

∼50−90% compared to non-private searches. Additionally, FPM can

support a large data corpus and unlimited requests. In contrast, the

other baseline mechanisms achieve 𝑟2 scores <0.02.

To summarize, our contributions are as follows:

• We propose FPM, a novel DPmechanism that privatizes reusable

and composable monomials for join/aggregation augmentations.

We integrate FPM into Saibot to achieve scalability for large

volumes of datasets and search requests with high utility.

• We optimize FPM based on the parity of the statistics order. For

the special case of tables containing a single feature, we reduce

the expected error by a further factor of

√
2.

• We provide a deep analysis of FPM to linear regression models.

Specifically, we study the statistical bias introduced in many-to-

many joins, and design an unbiased estimator to address this.
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• We design an optimization that carefully redistributes noise

across sufficient statistics to improve linear regression accuracy.

• We thoroughly evaluate FPM across a real-world data corpus

with >300 datasets. Our results show that FPM can accurately

identify augmentations that achieve 𝑟2 scores close to (∼50−90%)
those of a non-private search. We further use ablation studies to

validate our theoretical analyses and study the sensitivity.

Note: The paper is self-contained. References to appendices can be

disregarded or located in the technical report [12].

2 PRIVATE TASK-BASED DATA SEARCH
In this section, we formalize the problem of task-based private data

search. We start with an introduction of the non-private problem

and current solutions. We then provide the primer of differential

privacy, and present the differentially private data search problem.

2.1 Non-Private Task-based Data Search
We provide the background of previous task-based data search prob-

lem [19, 43, 45, 51], which is non-private, and previous solutions.

Data Model.We follow the standard relational data model. Rela-

tions are denoted as 𝑅, attributes as 𝐴, and domains as 𝑑𝑜𝑚(𝐴). 𝑅’s
schema is represented by 𝑆𝑅 = [𝐴1, · · · , 𝐴𝑛], with tuples labeled as

𝑡 and attribute values as 𝑡 [𝐴]. For clarity, the schema is included in

square brackets following the relation in examples 𝑅 [𝐴1, · · · , 𝐴𝑛].
The domain of a relation is the Cartesian product of attribute do-

mains: 𝑑𝑜𝑚(𝑅) = 𝑑𝑜𝑚(𝐴1) × · · · × 𝑑𝑜𝑚(𝐴𝑛). We consider each

dataset as a relational table and use these terms interchangeably.

Machine Learning. AML task𝑀 , like linear or logistic regression,

aims to fit a good model based on feature-target attribute pairs.

A training dataset 𝑅𝑡𝑟𝑎𝑖𝑛 comprises features 𝑋 ⊂ 𝑆𝑅 and a target

attribute 𝑦 ∈ 𝑆𝑅 . The task 𝑀 has a training function 𝑀.𝑇𝑟𝑎𝑖𝑛(·)
that inputs 𝑅𝑡𝑟𝑎𝑖𝑛 and outputs a model𝑚 that optimally predicts

𝑦 from 𝑋 , even for unseen 𝑋,𝑦 pairs. To assess𝑚, 𝑀 uses a func-

tion𝑀.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (·) which inputs𝑚 and a testing dataset 𝑅𝑡𝑒𝑠𝑡 , and

outputs the model’s performance on 𝑅𝑡𝑒𝑠𝑡 , typically measured by

accuracy, which is to be maximized.

Task-based Data Search. Given a data corpus with datasets from

different providers, requesters send a request with datasets to aug-

ment and a task (e.g., ML). Task-based data search aims to identify a

set of augmentable (join/union) datasets that maximize task utility.

To formalize this, let R = {𝑅1, 𝑅2, ...} be a data corpus with a set

of relations, with each from some provider. Requester sends a re-

quest with training and testing dataset (𝑅𝑡𝑟𝑎𝑖𝑛, 𝑅𝑡𝑒𝑠𝑡 ), and chooses

a model 𝑀 . Requester’s goal is to train model 𝑀 on 𝑅𝑡𝑟𝑎𝑖𝑛 and

maximize its performance on 𝑅𝑡𝑒𝑠𝑡 , which we call the task’s utility.
To improve the utility, the requester aims to find a set of provider

datasets in R that can be used to augment their data and enhance

model performance. The function 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝑅, 𝑎𝑢𝑔𝑇𝑦𝑝𝑒) is used to

find datasets in the data corpusR that can be joined or unioned with

𝑅, given 𝑎𝑢𝑔𝑇𝑦𝑝𝑒 ∈ {Z,∪}. The requester wants to try different

combinations of subsets of these datasets to augment
1
and find the

combination that maximizes utility.

1
For simplicity, we consider datasets that can be directly joined or unioned with

requester 𝑅𝑡𝑟𝑎𝑖𝑛 . The search space could be further expanded by, e.g., 1
𝑠𝑡

joining

provider datasets; our solution can be easily adapted to this larger search space.

Putting everything together, the problem can be formulated as:

Problem 1 (Task-BasedData Search.). For request (𝑅𝑡𝑟𝑎𝑖𝑛, 𝑅𝑡𝑒𝑠𝑡 , 𝑀),
find the set of datasets R∗∪,R

∗
Z ⊆ R from data corpus such that

R∗∪,R
∗
Z = argmax

R∪,RZ
𝑀.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑚,𝑅𝑡𝑒𝑠𝑡𝐴𝑢𝑔)

𝑠 .𝑡 . R∪ ⊆ 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝑅,∪),RZ ⊆ 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (𝑅,Z),
𝑅𝑡𝑟𝑎𝑖𝑛𝐴𝑢𝑔 = (𝑅𝑡𝑟𝑎𝑖𝑛 ∪𝑅1∈R∪ 𝑅1) Z𝑅2∈RZ 𝑅2
𝑅𝑡𝑒𝑠𝑡𝐴𝑢𝑔 = 𝑅𝑡𝑒𝑠𝑡 Z𝑅∈RZ 𝑅

𝑚 = 𝑀.𝑇𝑟𝑎𝑖𝑛(𝑅𝑡𝑟𝑎𝑖𝑛𝐴𝑢𝑔)

Solutions. Current task-based data search platforms [19, 43, 45, 51]

follow the architecture illustrated in black in Figure 2. Offline, when

providers upload raw datasets to Data storage, the platform com-

putes minhashes for data discovery [17, 29], and sketches to acceler-

ate retraining [19, 34, 45, 51]. Online, the platform solves Problem 1

for each request (𝑅𝑡𝑟𝑎𝑖𝑛, 𝑅𝑡𝑒𝑠𝑡 , 𝑀). First, data discovery [17, 29] uses
the minhashes or sketches to return a set of candidate datasets.Data
search then identifies a subset that maximizes task utility. The brute-

force search evaluates all possible combinations and can be expen-

sive due to retraining costs and the large set of combinations, so ap-

proaches use various heuristics and greedy algorithms [19, 43, 51].

Our work primarily builds on Kitana [34], which follows the

architecture in Figure 2 and uses specialized sketches for factorized

ML. factorized ML trains models over joins without materializing

them, which speeds up model retraining and evaluation after any

candidate augmentation. This allows Kitana to execute task-based

searches much faster, while maintaining competitive task utility.

Our insight is that these sketches boost performance and act as the

ideal sufficient statistics for DP, as detailed in Section 3.2.

2.2 Differential Privacy Primer
Before delving into our solution to differentially private dataset

search, we first introduce differential privacy (DP). We focus on the

Gaussian mechanism, a common, straightforward technique offer-

ing comparable performance and guarantee with other baselines

(e.g., it offers the same approximate DP by shuffling [26]). In prac-

tice, our solution can also support pure DP by Laplace mechanism

(Section 5.2), where shuffling falls short.

Differential Privacy. DP [22] is a technique used to protect recon-

struction, membership, and inference attacks [24] by bounding the

information leakage from individual records. DP guarantees that

the probability that an algorithm will produce the same output on

two datasets that differ by only one record is bounded. Formally:

Definition 1 ((𝜖, 𝛿) −𝐷𝑃 ). Let 𝑓 be a randomized algorithm that
takes a relation 𝑅 as input. 𝑓 is (𝜖, 𝛿) − 𝐷𝑃 if, for all relations 𝑅1, 𝑅2
that differ by adding or removing a row, and for every set 𝑆 of outputs
from 𝑓 , the following holds: 𝑃𝑟 [𝑓 (𝑅1) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [𝑓 (𝑅2) ∈ 𝑆] + 𝛿 ,
where 𝜖 and 𝛿 are non-negative real numbers (called privacy budget). 𝜖
controls the level of privacy, and 𝛿 controls the level of approximation.
For the special case when 𝛿 = 0, (𝜖, 0) − 𝐷𝑃 is also called pure DP.

DP definitions can be global (GDP) or local (LDP) depending
on inputs: GDP applies to randomized algorithms that process an

entire relation (as an aggregator) described above. In contrast, LDP
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guarantees the differential privacy of algorithms on individual tu-

ples (or relations with a cardinality of 1) before transmitting tuples

to any aggregator. As a result, LDP algorithms can function under a

weaker trust model, where no aggregator is trusted. However, this

often leads to increased noise levels and reduced data utility [64].

There are two important theorems of DP:

Theorem 1 (Robustness to Post-Processing). Let 𝑓 be a ran-
domized algorithm that provides (𝜖, 𝛿) − 𝐷𝑃 . Let 𝑔 be an arbitrary
function. Then, the composition 𝑔 ◦ 𝑓 provides (𝜖, 𝛿) − 𝐷𝑃 .

Theorem 2 (Seqential Composition). Let 𝑓1, . . . , 𝑓𝑛 be a se-
quence of independent algorithms that provide (𝜖1, 𝛿1), . . . , (𝜖𝑛, 𝛿𝑛) −
𝐷𝑃 , respectively. Then, the algorithm that applies each of them in
sequence, i.e., 𝑓𝑛 ◦ 𝑓𝑛−1 · · · ◦ 𝑓1, is (

∑𝑛
𝑖=1 𝜖𝑖 ,

∑𝑛
𝑖=1 𝛿𝑖 ) − 𝐷𝑃 .

To ensure (𝜖, 𝛿) − 𝐷𝑃 when Q queries need to be executed, the

privacy budget (𝜖, 𝛿) can be split among the queries using sequential

composition, such as allocating (𝜖/Q, 𝛿/Q) for each query. This

work employs (basic) sequential composition for simplicity, but it

could be further optimized by advanced composition [23].

Gaussian Mechanism. The Gaussian mechanism [21] adds noise

to a query function to satisfy (𝜖, 𝛿)-differential privacy. Formally:

Theorem 3 (Gaussian Mechanism.). Given 𝜖, 𝛿 ∈ (0, 1], let
query 𝑞 be a function that takes 𝑅 as input and outputs a vector of
real numbers. The Gaussian mechanism independently adds random
noise to each output to satisfy (𝜖, 𝛿)-differential privacy: 𝑞′ (𝑅) =

𝑞(𝑅) + N (0, 𝜎2), where N(0, 𝜎2) denotes a Gaussian distribution
with mean 0 and standard deviation 𝜎 =

√︁
2 ln(1.25/𝛿)Δ𝑞/𝜖 . Δ𝑞 is

the ℓ2-sensitivity of𝑞 defined as: for all possible neighbouring relations
𝑅1, 𝑅2, Δ𝑞 is the maximum ℓ2 distance of 𝑞 outputs ∥𝑞(𝑅1) −𝑞(𝑅2)∥2.

Different definitions exist for neighbouring relations (and can

be extended to multi-relations). We adopt bounded DP [15], where

neighbouring relations 𝑅1, 𝑅2 have identical row numbers, but one

row’s data differ; our system can be readily adapted for other defi-

nitions (e.g., unbounded DP where row numbers differ).

2.3 Private Task-based Data Search
We first lay out the privacy requirements based on the criteria

(Section 1) and motivated by real-world use cases. Then, we de-

fine the differentially private data search problem, and discuss the

challenges and the intuition for solutions.

Trust Model. We adopt a standard two-level aggregator setting

illustrated in Figure 3: the 1
𝑠𝑡
-level aggregators are providers/re-

questers (e.g., hospitals, schools), and the 2
𝑛𝑑
-level aggregator is

the search platform. Individuals share data with their direct 1
𝑠𝑡
-

level aggregator, who is trusted (e.g., a hospital collects data from

patients and stores them securely). However, they don’t trust other

non-direct 1
𝑠𝑡
-level aggregators or the 2

𝑛𝑑
-level aggregators (e.g.,

patients don’t trust other hospitals and the search platform).

Our trust model sits between the global model (by GDP) and local
model (by LDP): Previous global model [36, 40, 61] assumes that the

central data curator (2
𝑛𝑑
-level aggregator) is trusted. On the con-

trary, the local model assumes no trusted aggregators. In contrast

to the shuffle model [26, 28] which requires a trusted shuffler at ei-

ther 1
𝑠𝑡
-(Shuffle-1, similar to ours) or 2

𝑛𝑑
-level (Shuffle-2,

similar to the global model), we don’t rely on any trusted shuffler.

Search Platform

Data Storage

Data Discovery Data Search

Request

Statistics Raw Datasets

Provider dataset Offline

Online

Figure 2: Saibot architecture. Previous data search platforms
(black) store raw datasets in data storage, use data discovery
to identify augmentable datasets, and search the datasets
for task improvement. To ensure privacy, Saibot additionally
applies FPM (red) to compute sufficient semi-ring statistics,
that are aggregated (𝛾) and privatized (∼) before being sent
to the search platform. These statistics can support join and
union queries to train and evaluate ML as post-processing.
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Figure 3: Illustration of Saibot trust model, where individuals
only trust the direct 1𝑠𝑡 -level aggregator, and not any others.

In practice, we believe our trust model fits the structure of many

organizations, where individuals solely trust their immediate data

aggregator (like a hospital or service provider), but do not trust

any other aggregators. Further, regulatory requirements [6, 8] place

privacy protection requirements on the 1
𝑠𝑡
-level aggregator.

Privacy Requirement. Providers and requesters hope to disclose

datasets to the malicious search platform for augmentation. Each

provider or requester sets a DP budget (𝜖, 𝛿) for each of their

datasets, which is independent of other datasets and the search

platform. As per previous works [46, 62], we assume that each

individual contributes to exactly one row of one dataset. In line

with prior studies [36, 40, 61], we assume that the schemas and the

domains of join keys (as group-by attributes) are public.

The differentially private task-based data search problem is

then defined as Problem 1, adhering to the above trust model and

satisfying the privacy requirements.

Example 1. Fitbit [47], a mobile health app, gathers health data
from individuals and is trusted by individuals to handle sensitive infor-
mation responsibly. To enhance the accuracy of its ML recommender,
Fitbit plans to share data with a search platform (as requesters) but
also wants to protect sensitive health data. Upon obtaining consent
from individuals, Fitbit employs DP to privatize each dataset and uses
Saibot to search for valuable augmentations.

Private task-based data search is particularly challenging be-

cause, even for a single request, it requires model retraining over

a combinatorially large space of augmented datasets created by
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joining and unioning candidate datasets. How to avoid exhaust-

ing the requester’s and the providers’ privacy budgets? How can

massive datasets and requests be scaled without degrading search

quality? Is there a one-time differentially private, yet universally

useful intermediate representation [16, 31]?

We draw inspiration from Kitana [34] which uses factorized

linear regression to expedite data search. Kitana computes the

gram matrix semi-ring (Section 3.1) for each dataset, allowing fast

join/union with a candidate dataset and evaluation of the linear

regression accuracy. While semi-rings were initially used for per-

formance, they also make an ideal intermediate representation for

DP. Thus, in the next section, we design FPM to privatize sufficient

semi-ring statistics to support private ML over joins and unions.

3 FACTORIZED PRIVACY MECHANISM
In this section, we introduce Factorized Privacy Mechanism (FPM),
which privatizes sufficient semi-ring statistics. We start with the

factorizedML background, extend it tomonomial semi-ring, present

our main mechanism algorithms, and analyze its errors.

3.1 Factorized Machine Learning Primer
We start with the fundamental concepts of annotated relations and

aggregation pushdown, then introduce factorized ML [13, 48].

Annotated Relations. The annotated relational model [30] maps

𝑡 ∈ 𝑅 to a commutative semi-ring (𝐷, +,×, 0, 1), where 𝐷 is a set,

+ and × are commutative binary operators closed over 𝐷 , and 0/1
are zero/unit elements. An annotation for 𝑡 ∈ 𝑅 is denoted as 𝑅(𝑡).
Semi-ring annotation expresses various aggregations. For example,

the natural numbers semi-ring expresses count aggregations.

Semi-ringAggregationQuery. Semi-ring aggregation queries can

now be reformulated using annotated relations by translating group-

by, union, and join operations into addition (+) and multiplication

(×) operations over the semi-ring annotations, respectively.

(𝛾A𝑅) (𝑡) =
∑︁

{𝑅(𝑡1) | 𝑡1 ∈ 𝑅, 𝑡 = 𝜋A (𝑡1)}
(𝑅1 ∪ 𝑅2) (𝑡) = 𝑅1 (𝑡) + 𝑅2 (𝑡)
(𝑅1 Z 𝑅2) (𝑡) = 𝑅1 (𝜋𝑆𝑅

1

(𝑡)) × 𝑅2 (𝜋𝑆𝑅
2

(𝑡))

(1) The annotation for group-by 𝛾A𝑅 is the sum of the annotations

within the group. (2) The annotation for union 𝑅1 ∪ 𝑅2 is the sum
of annotations in 𝑅1 and 𝑅2. (3) The annotation for join 𝑅1 Z 𝑅2 is
the product of annotations from contributing tuples in 𝑅1 and 𝑅2.

Aggregation Pushdown. The optimization of factorized ML [13,

53] involves the distribution of aggregations 𝛾 (additions) through

joinsZ (multiplications). For example, consider the query𝛾𝐷 (𝑅1 [𝐴, 𝐵] Z
𝑅2 [𝐵,𝐶] Z 𝑅3 [𝐶, 𝐷]). Rather than applying 𝛾 on the join (which is

𝑂 (𝑛3) where 𝑛 is relation size), 𝛾 can be performed on 𝑅 before Z
with 𝑆 , and this process can be repeated two more times (in 𝑂 (𝑛)):

𝛾𝐷 (𝛾𝐶 (𝛾𝐵 (𝑅1 [𝐴, 𝐵]) Z 𝑅2 [𝐵,𝐶]) Z 𝑅3 [𝐶, 𝐷])

The associativity of additions can be similarly exploited for union:

𝛾𝐴 (𝑅1 [𝐴, 𝐵] ∪ 𝑅2 [𝐴, 𝐵]) = 𝛾𝐴 (𝑅1 [𝐴, 𝐵]) ∪ 𝛾𝐴 (𝑅2 [𝐴, 𝐵])

Factorized Linear Regression. The fundamental optimization of

factorizedML is aggregation pushdown, but different semi-rings are

used for different models. We use linear regression as an example.
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Figure 4: Optimized query plan of 𝛾 ((𝑅1 ∪ 𝑅2) Z𝐴 𝑅3) for
factorized ML. Aggregations are pushed down before joins.
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Figure 5: Aggregated monomials and statistics.

We start with an overview of linear regression and its sufficient

statistics. Given the training dataX ∈ R𝑛×𝑚 , and the target variable

y ∈ R𝑛×1, the goal is to find parameters\ ∈ R𝑚×1
thatminimize the

square loss \∗ = 𝑎𝑟𝑔𝑚𝑖𝑛\ ∥y−X\ ∥2, yielding a closed-form solution

\∗=(X𝑇X)−1X𝑇 y. Including the target variable as a special feature
and appending it to X for X′=[X | y], we find that X′𝑇X′∈R𝑚′×𝑚′

,

where𝑚′ =𝑚 + 1, is the core sufficient statistics to compute, where

each cell represents the sum of products between feature pairs.

We can compute X′𝑇X′
over the join 𝑅Z = 𝑅1 Z ... Z 𝑅𝑘 by the

covariance matrix semi-ring [53]. For𝑚′
features, the semi-ring is

defined as a triple (𝑐, s,Q) ∈ (Z,R𝑚′
,R𝑚

′×𝑚′ ), which contains the

count, sums, and sums of pairwise products respectively. The zero

and one elements are 0 = (0, 0𝑚, 0𝑚′×𝑚′ ) and 1 = (1, 0𝑚′
, 0𝑚

′×𝑚′ ).
+ and × between two annotations 𝑎 and 𝑏 are defined as:

𝑎 + 𝑏 =(𝑐𝑎 + 𝑐𝑏 , s𝑎 + s𝑏 ,Q𝑎 + Q𝑏 )

𝑎 × 𝑏 =(𝑐𝑎𝑐𝑏 , 𝑐𝑏s𝑎 + 𝑐𝑎s𝑏 , 𝑐𝑏Q𝑎 + 𝑐𝑎Q𝑏 + s𝑎s𝑇𝑏 + s𝑏s
𝑇
𝑎 )

Then, computing X′𝑇X′
is reduced to executing 𝛾 (𝑅1 Z ... Z 𝑅𝑘 ),

where aggregation can be pushed down as discussed before.

Example 2. Consider 𝑅1, 𝑅2, 𝑅3 in Figure 4. We aim to train linear
regression on (𝑅1∪𝑅2)Z𝐴𝑅3 using D as the feature and C as the target
variable. The naive solution is to first materialize the union and join
results (Figure 5) and then compute X′𝑇X′. Using factorized linear
regression, we can optimize the query plan (Figure 4) by pushing
down aggregations: 𝛾 ((𝛾𝐴 (𝑅1)∪𝛾𝐴 (𝑅2))Z𝐴 𝛾𝐴 (𝑅3)). This approach
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yields the same result as the naive solution, but avoids the costly
materialization. We use the aggregates to fit the linear regression:

\ = (X𝑇X)−1X𝑇 y =

[∑
𝐷2

∑
𝐷∑

𝐷
∑
1

]−1 [∑
𝐶𝐷∑
𝐶

]
=

[
80 24

24 8

]−1 [
66

22

]
After obtaining the model parameters \ , the model performance

can also be evaluated. For square loss,

∑(𝑦 − 𝑥𝑇 \ )2 =
∑(𝑦2 −

2\𝑇 𝑥𝑦 + \𝑇 𝑥𝑥𝑇 \ ) = y𝑇 y − 2\𝑇X𝑇 y + \𝑇X𝑇X\ .

3.2 Monomial Semi-ring
This section introduces sufficient statistics as vectors of monoids

and extends it with semi-ring operations + and ×. This helps bridge
ideas from two communities—semi-rings from the factorized ML

literature that train models over joins and unions, but primarily

focused on non-private linear regression, and privatized sufficient

statistics from the ML literature [35, 41, 59] that approximate gen-

eralized linear models, but do not support joins and unions. We are

the first to explicitly extend semi-ring from gram matrix (linear

regression) to higher order monomial (generalized linear models).

This section focuses on the semi-ring design of monomials to sup-

port join and union operations without DP. In the next section, we

introduce FPM, a mechanism to privatize these monomials for DP.
We first define the 𝑘-order monomial [35] in sufficient statistics:

Definition 2 (𝑘-order Monomial). Given n random variables
𝑓1, 𝑓2, ..., 𝑓𝑛 , the 𝑘-order monomials are of the form 𝑝 = 𝑓

𝑘1
1
𝑓
𝑘2
2
...𝑓

𝑘𝑛
𝑛 ,

where 𝑘1, 𝑘2 ..., 𝑘𝑛 are 𝑛 non-negative integers s.t.
∑𝑛
𝑖=1 𝑘𝑖 = 𝑘 .

The core statistics for ML are the expected value of each mono-

mial 𝐸 [𝑝]. For example, 1-order monomials estimate means, 1, 2-

order monomials estimate covariance (core sufficient statistics for

linear regression), and 1, 2, 3-order monomials estimate skewness.

Moreover, a generalized linear model can be approximated by high-

order monomials using Taylor series expansions [35].

Example 3. Consider the relation in Figure 5 (left) and random
variables 𝐵,𝐶, 𝐷 . The 1-order monomials are 𝐵,𝐶, 𝐷 , the 2-order
monomials are 𝐵2, 𝐵𝐶,𝐶2, 𝐵𝐷,𝐶𝐷, 𝐷2, and the 3-order monomials
are 𝐵3, 𝐵2𝐶, 𝐵2𝐷, 𝐵𝐶2, 𝐵𝐶𝐷, .... The statistics (right) are the expected
monomials when the relation is the population, and can be derived
from the aggregated monomials (middle). The 1,2-order statistics are
the sufficient statistics for linear regression training (Example 2).

Instead of computing statistics over join and union through

costly materialization and subsequent aggregation, factorized lin-

ear regression utilizes semi-ring operators for + and× to push down

the aggregation of 1,2-order statistics. We extend this concept by

defining operators for a 𝑘-order monomial semi-ring, thus general-

izing factorized linear regression (2-order monomial semi-ring).

Definition 3 (𝑘-order monomial semi-ring). Given𝑚 features
𝑓1, 𝑓2, ..., 𝑓𝑚 , the 𝑘-order monomial semi-ring has domain of a vector
with size 1−𝑚𝑘

1−𝑚 for𝑚≥2, and 1+𝑘 for𝑚=1. The domain breaks into
𝑘+1 subvectors [𝑠0, 𝑠1, ..., 𝑠𝑘 ] where 𝑠𝑖 is a vector of size𝑚𝑖 . Then, given
two semi-ring element 𝑎 = [𝑠𝑎

0
, 𝑠𝑎
1
, ..., 𝑠𝑎

𝑘
] and 𝑏 = [𝑠𝑏

0
, 𝑠𝑏
1
, ..., 𝑠𝑏

𝑘
], let:

𝑎 + 𝑏 =[𝑠𝑎
0
+ 𝑠𝑏

0
, 𝑠𝑎
1
+ 𝑠𝑏

1
, ..., 𝑠𝑎

𝑘
+ 𝑠𝑏

𝑘
]

𝑎 × 𝑏 =[𝑠𝑎
0
⊗ 𝑠𝑏

0
,

1∑︁
𝑖=0

𝑠𝑎𝑖 ⊗ 𝑠𝑏
1−𝑖 , ...,

𝑘∑︁
𝑖=0

𝑠𝑎𝑖 ⊗ 𝑠𝑏
𝑘−𝑖 ]
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Figure 6: Aggregation of 3-order monomial semi-ring over
join:𝛾 (𝑅1 [𝐴] Z 𝑅2 [𝐵]). Each row is one tuple, andwe show the
vector representation for the first tuple in 𝑅1. Dictionary rep-
resentation removes redundancy and sparsity. Dotted lines
map the contributing components to aggregated results.

where ⊗ : 𝑅𝑝 × 𝑅𝑞 → 𝑅𝑝𝑞 is the tensor product defined as: for
a = [𝑎1, 𝑎2, ..., 𝑎𝑝 ] and b = [𝑏1, 𝑏2, ..., 𝑏𝑞], tensor product computes
the pairwise product a ⊗ b = [𝑎1𝑏1, 𝑎1𝑏2, ..., 𝑎𝑝𝑏1, 𝑎𝑝𝑏2, ..., 𝑎𝑝𝑏𝑞].

The zero element is a vector of all zeroes, and the one element is a
vector with non-zero 𝑠0 = [1], but the rest as all zeroes.

Intuitively, each subvector 𝑠𝑎
𝑘
holds the 𝑘-order monomials with

a size𝑚𝑘
, as there are𝑚𝑘

possible permutations with repetition. In

order to compute statistics using a 𝑘-order monomial semi-ring, we

annotate 𝑅 by assigning to each tuple 𝑡 its monomials (non-existing

features are considered to be all zeros). Note that, while this vector

representation provides a straightforward way to define semi-rings

for arbitrary orders, it is inherently inefficient and can be optimized

by the dictionary representation discussed next.

Dictionary Representation. Vector representation has redundan-

cies (e.g., 𝑓1 𝑓2 = 𝑓2 𝑓1) and sparsity (nonexistent features are zeros).

Dictionary representations [39] help reduce redundancy: monomi-

als serve as keys to deduplicate, and monomials with zeros are not

materialized. We next provide an example of semi-ring operations

using the dictionary representation for join-aggregation:

Example 4. Consider two relations of a single feature 𝑅1 [𝐴] =

[2, 3] and 𝑅2 [𝐵] = [3, 4], and the aggregation query 𝛾 (𝑅1 Z 𝑅2)
for 3-order monomial semi-ring. Figure 6 illustrates the annotated
relations and the query processing. To start, the aggregations are
pushed down by summing each monomial. Next, the monomials are
combined according to the multiplication operator for join.

Assuming the join result, 𝑅Z , as the population, we can use

the aggregated monomials to compute statistics (i.e., the expected

monomials). Let 𝑠=𝛾 (𝑅Z) be the aggregated monomial semi-ring.

Then, for monomial 𝑝: 𝐸 [𝑝] = 𝑠 [𝑝]/𝑠 [𝑐], where 4 is the count (0-
ordermonomial). For example, in Figure 6,𝐸 [𝐴𝐵]=𝑠 [𝐴𝐵]/𝑠 [𝑐]=35/4
=8.75. The aggregated monomials comprise count and sum aggre-

gations over the base tables, which can be efficiently computed by

requesters/providers using SQL queries. Further, they serve as an

ideal intermediate for DP due to their reusability, as discussed next.

3.3 FPMMechanism
In this section, we present the Factorized Privacy Mechanism (FPM)
which applies the Gaussian mechanism to the aggregated mono-

mials discussed in the previous section to support differentially
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private data search (Section 2.3) while maintaining high utility. The

primary algorithmic challenge FPM addresses is designing suffi-

cient statistics that are composable (through semi-ring operators)

and reusable (as post-processing without additional privacy cost)

to support ML across various join and union augmentations.

We make the following simplifications: (1). Features consist only

of numerical attributes, and join keys consist only of categorical at-

tributes. Section 3.5 describes preprocessing to support categorical

features. (2). Group-by operator 𝛾 has been extended to annotate

group-by keys without tuples with zero elements (group-by at-

tribute domains are assumed public in Section 2.3). (3). Datasets

are preprocessed so that the ℓ2 norm of the features in each tuple is

bounded by a constant value 𝐵, following previous works [25, 59].

Algorithms. The FPM mechanism, detailed in Algorithm 1, is ap-

plied locally by either the requester or provider before dataset

upload to the search platform. It uses as inputs: (1) the relation 𝑅 to

be privatized (2) the join key𝐴2
, which = 𝑛𝑢𝑙𝑙 if 𝑅 is only for union,

(3) the order of monomials, 𝑘 , based on the model to support, and

(4) the DP budget (𝜖, 𝛿) for 𝑅. FPM computes locally aggregated

monomials𝛾 (𝑅) and applies the Gaussian mechanism to these, with

sensitivity optimized based on order parity and feature count (line

2, 7): For even-order monomials, sensitivity is reduced by

√
2, and

if there’s only one feature, sensitivity is reduced by another

√
2.

Theorem 4. FPM is (𝜖, 𝛿) − 𝐷𝑃 .

Proof Sketch. FPM applies the Gaussian mechanism [21] to

the aggregated monomials for (𝜖, 𝛿) −𝐷𝑃 . Therefore, we only need

to show the correctness of Δ. We present simple cases illustrating

proof concepts for the union and join of 1 feature (with lower Δ),
and the union of 2 features with 1/2-order monomial semiring.

These cases are meant to illustrate the key intuitions; full proofs

and generalizations are available in Appendix A due to space limits.

• (1 feature, Union, any order) For union, count (0-order monomial)

remains unchanged as we consider bounded DP, where the neigh-
bour relation has one tuplemodified (instead of removed/added). Let

the modified feature value be 𝑎 → 𝑎′ where both 𝑎 and 𝑎′ have a do-
main of [−𝐵, 𝐵]. Then, for the 𝑖-th monomial, the squared difference

is (𝑎𝑖 −𝑎′𝑖 )2. When 𝑖 is odd, 𝑎𝑖 ∈ [−𝐵𝑖 , 𝐵𝑖 ], and (𝑎𝑖 −𝑎′𝑖 )2 ≤ (2𝐵𝑖 )2.
When 𝑖 is even, 𝑎𝑖 ∈ [0, 𝐵𝑖 ], and (𝑎𝑖 − 𝑎′𝑖 )2 ≤ (𝐵𝑖 )2.
•(1 feature, Join, any order) For join, the query also groups results

by join key 𝐴. This can be considered as a histogram [63], where

each bin is a join key, and the value is the 𝑘-order monomial semi-

ring. The neighbouring relation has two cases: the modified tuple

has changed the join key or not. If the join key doesn’t change,

this is the same as the union case. If the join key changes, there

are two bins with a maximum square difference of

∑𝑘
𝑖=0 𝐵

2𝑖
(note

that, unlike the union, the counts change). Thus, the sensitivity is

bounded by

√︃
2

∑𝑘
𝑖=0 𝐵

2𝑖
. Finally, we take the maximum.

•(2 features, Union, 1-order) Let themodified feature value be (𝑎, 𝑏) →
(𝑎′, 𝑏′) where both 𝑎2 + 𝑏2 and 𝑎′2 + 𝑏′2 are ≤ 𝐵2. Then, consider

the 1-order monomials (𝑎, 𝑏), (𝑎′, 𝑏′). The squared difference is:

(𝑎 − 𝑎′)2 + (𝑏 − 𝑏′)2 ≤(2𝑎2 + 2𝑎′2) + (2𝑏2 + 2𝑏′2) = 4𝐵2

2𝐴 could be composite. To support multiple join keys, the DP budget can be split among

different key combinations. Additionally, optimization techniques can be applied to

take advantage of the correlations between join keys [49].

The sensitivities for higher odd orders are similar.

• (2 features, Union, 2-order) For even-orders, we can obtain a tighter
bound. Consider the 2-order monomials (𝑎2, 𝑎𝑏, 𝑏2), (𝑎′2, 𝑎′𝑏′, 𝑏′2).
The squared difference is:

(𝑎2 − 𝑎′2)2 + (𝑎𝑏 − 𝑎′𝑏′)2 + (𝑏2 − 𝑏′2)2

≤(𝑎2 − 𝑎′2)2 + 2(𝑎𝑏 − 𝑎′𝑏′)2 + (𝑏2 − 𝑏′2)2

=(𝑎4−2𝑎2𝑎′2+𝑎′4)+(2𝑎2𝑏2−4𝑎𝑏𝑎′𝑏′+2𝑎′2𝑏′2)+(𝑏4−2𝑏2𝑏′2+𝑏′4)
=(𝑎2 + 𝑏2)2 + (𝑎′2 + 𝑏′2)2 − 2(𝑎𝑎′ + 𝑏𝑏′)2 ≤ 𝐵4 + 𝐵4 − 0 = 2𝐵4

For higher even orders, we can similarly amplify the monomials

by the binomial coefficients (second line) to find a non-negative

red term for even-order monomials, resulting in a tighter bound.

Extending to joins follows a similar approach as the single feature

case, where we consider group-by queries as histograms. □

Algorithm 1: FPM mechanism

inputs :Relation 𝑅, Join Key 𝐴, Order 𝑘 , DP budget (𝜖, 𝛿)
output :Privatized Aggregated Relation �̃�

1 if 𝐴 = 𝑛𝑢𝑙𝑙 (Union Only) then

2 Δ =

√︃∑𝑘
𝑖=1 (if i odd: 4, elif #fea=1: 1, else: 2) · 𝐵2𝑖 ;

3 𝜎, �̃� =
√︁
2 ln(1.25/𝛿)Δ/𝜖,𝛾 (𝑅);

4 // add i.i.d. noises to each 1 − 𝑘 order monomial 𝑠;

5 �̃� = {𝑠 : �̃� [𝑠] + 𝑒∼N(0, 𝜎2) for 1 − 𝑘 monomial 𝑠};

6 else
7 Δ=𝑚𝑎𝑥 (

√︃∑𝑘
𝑖=1 (if i odd: 4, elif #fea=1: 1, else: 2) · 𝐵2𝑖 ,

√︃
2

∑𝑘
𝑖=0 𝐵

2𝑖 ) ;

8 𝜎, �̃� =
√︁
2 ln(1.25/𝛿)Δ/𝜖,𝛾𝐴 (𝑅);

9 foreach 𝑎 ∈ 𝑑𝑜𝑚(𝐴) do
10 // add i.i.d. noises to each 0 − 𝑘 order monomial 𝑠;

11 �̃�(𝑎)={𝑠:�̃�(𝑎) [𝑠]+𝑒∼N(0, 𝜎2) for 0 − 𝑘 monomial 𝑠};

12 return �̃�;

3.4 Comparison with Other Mechanisms
We next analyze the error of FPM in estimating the statistics 𝑠

(expected values of monomials). Generally, the expected errors of 𝑠

are correlated with the error of the target model parameter 𝛽 and

accuracy; we will study the confidence bound for linear regression

parameter in the next section, where the 𝑠 error is the key factor.

Setting. We consider a data corpus with size 𝑛𝑐𝑜𝑟𝑝 (defined as

the number of provider datasets) and has received 𝑛𝑟𝑒𝑞 requests.

To simplify the analysis, we assume that: (1) the search only uses

union operations (and we will discuss the extension to join). (2)

each dataset has one feature, 𝑛 tuples, and a DP budget of (𝜖, 𝛿).
The search platform evaluates all possible augmentations, each

corresponding to a unique combination of provider datasets.

Metrics. The goal is to evaluate, for each augmentation, the ex-

pected ℓ2 error of the privatized set of monomials 𝑠: 𝐸 [∥𝑠 − 𝑠 ∥2].
Mechanisms. We compare FPM with standard DP mechanisms

used in various existing trust models:

• For Saibot’s trust model (Section 2.3), FPM (Algorithm 1) pri-

vatizes local aggregates independently for each dataset, and

combines the aggregates with factorized ML.
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• For the local model, the Per-tuple Privacy Mechanism (TPM)3

applies Algorithm 1 to privatize each tuple [64].

• For the global model, the Aggregate Privacy Mechanism (APM)4

first computes the union result 𝑅∪ after augmentation, and then

applies Algorithm 1 to 𝛾 (𝑅∪) [59]. To ensure (𝜖, 𝛿) − 𝐷𝑃 for all

𝑛𝑟𝑒𝑞 (2𝑛𝑐𝑜𝑟𝑝−1 − 1) augmentations, the DP budget has to be split.

• For the shuffle model, shuffling [26] privatizes each tuple, similar

to TPM, but applies Laplace mechanism with the amplified pri-

vacy budget. These tuples are shuffled either at the 1
𝑠𝑡
- (SF-1)

or 2
𝑛𝑑

-level (SF-2); akin to APM, SF-2 requires budget splits.

Proposition 5. For the estimation of each augmentation (as-
suming that the number of augmented datasets and the order of 𝑠
are small constants), FPM/SF-1 has expected ℓ2 error of �̃� (Δ/𝑛𝜖),
while TPM has an error of �̃� (Δ/

√
𝑛𝜖) and APM/SF-2 has an error of

�̃� (𝑛𝑟𝑒𝑞2𝑛𝑐𝑜𝑟𝑝Δ/𝑛𝜖), where �̃� (·) hides at most a logarithmic term.

The proof is in Appendix B.

Remark. Proposition 5 highlights prior mechanisms’ limitations:

APM/SF-2 are competitive only for small corpora and quickly ex-

haust budget for larger requests/corpus sizes due to budget split for

all possible augmentations, and require trust in centralized aggre-

gators/shufflers. TPM adds excessive noise to each tuple, requiring

quadratically more tuples to achieve the same level of error as FPM.
Although SF-1 can theoretically match FPM’s complexity with

privacy amplification, it’s significant only for large numbers of

tuples. For instance, given 𝜖=1 and 𝛿=10−6, 𝜖 is amplified when 𝑛

reaches ∼650 [26, 28]. However, small 𝑛 needs amplification most,

where SF-1 provides much larger errors than FPM (Section 5.2).

3.5 Differentially Private Data Search Platform
In this section, we discuss Saibot, a data search platform that inte-

grates FPM to ensure differential privacy.

Provider. The architecture of the Saibot, which uses FPM for DP,
is illustrated in Figure 2. For each dataset 𝑅 data provider owns,

the supported operation (Z /∪5
or ∪-only) is decided. If join is

supported, the join key𝐴must also be specified. FPM is then applied

locally to 𝑅 to privatize the sufficient statistics 𝛾 (𝑅), which are then

uploaded to Saibot. As Saibot is not trusted, data storage only stores

privatized statistics, but not raw data. All operations over 𝛾 (𝑅) are
post-processing without additional DP costs.

Requester. The requester has model type𝑀 and 𝑅𝑡𝑟𝑎𝑖𝑛 , and wants

to improve accuracy on 𝑅𝑡𝑒𝑠𝑡 . The requester computes and submits

to Saibot the privatized sufficient statistics
�𝛾 (𝑅𝑡𝑟𝑎𝑖𝑛) and �𝛾 (𝑅𝑡𝑒𝑠𝑡 ).

Data discovery returns a set of joinable or unionable relations𝑅 from

data storage. Then, Data search applies greedy algorithm (following

Kitana [34]): in each iteration, it evaluates each candidate and adds

the one that most improves the model accuracy. Saibot is agnostic
to the search algorithm, and others [19, 56] can also be used.

Data Discovery. Previous data discovery systems [17, 29] leverage

MinHash sketches, column type and data distribution statistics;

Saibot supports all of them. Specifically, for categorical attributes,

3
An alternative is to apply Gaussian mechanism to raw tuples and then compute

monomial semi-ring; this, however, results in an even larger error.

4
There are other alternatives like perturbing objectives and gradients; however they

are similarly limited by the combinatorially large number of models to train.

5
Any dataset supports join also supports union by aggregating out the join key.

we utilize minhash sketches, computed from public domains, to

measure set similarity. For numerical attributes, we rely on public

schemas for column names and types.

Preprocessing. Before applying FPM, requesters and providers

can locally preprocess datasets to enhance utility and robustness.

For instance, datasets may have categorical features not directly

supported by the proxy model (linear regression). Standard one-hot

encoding can be applied, treating the encoded features as numeri-

cal for privatization by FPM. Saibot also applies two steps to boost

DP robustness. First, it removes outliers (>1.5 std from the mean),

which typically improves model performance and reduces the tuple

ℓ2 norms, enhancing DP noise robustness [42]. Second, all DPmech-
anisms (including ours) degrade with increasing dimensionality due

to the increased tuple ℓ2 norms. Thus, Saibot applies dimensionality

reduction [44] to retain the top𝐾 principal components (𝐾=1works

best in our experiments), and rescales tuples to bound max ℓ2 norm

≤𝐵. These steps are applied to all datasets and DP baselines in our

real-world experiments (Section 5.1).

Supporting Varied Privacy Needs. A unique benefit of Saibot’s
design is that it can adapt to different privacy needs. In cases

where pure DP (𝛿=0) is required, FPM can be modified to apply

Laplace mechanisms [22]. In situations where individuals don’t

trust providers or requesters, FPM can be reduced to LPM to priva-

tize individual tuples. Conversely, shuffling only guarantees approx-

imate DP and GPM always requires a trusted centralized aggregator.

ML training after data search. After Saibot finds predictive aug-
mentations using a differentially private proxy model (linear regres-

sion), the model could be directly returned to requesters. However,

requesters may need more complex model𝑀 , and the training shall

also satisfy DP. To achieve this, Saibot can be integrated within a

larger differentially private federated ML system [55, 58, 60, 65],

where Saibot first locates augmentations, and then the ML systems

use the augmented dataset to train sophisticated models, such as

deep neural networks, via differentially private gradient descent.

Scope. While Saibot can employ FPM to support a wide range of

models [52] and approximate GLM [41], this paper focuses on linear

regression [53] because it’s widely used and is adopted by previous

data search [18, 34, 51]. Next, we dive deep into linear regression

to analyze the task utility and propose further optimizations.

4 DIVING DEEP INTO LINEAR REGRESSION
This section examines the ML task utility FPM provides and sug-

gests optimizations for linear regression. We start with the assump-

tion of linear regression on many-to-many join (as opposed to

one-to-one [32, 58]), which is challenging due to unexpected dupli-

cation and independence. We then propose an unbiased estimator.

Next, we explore the confidence bounds for the linear regression

parameters and propose optimizations to tighten the bound further.

4.1 Linear Regression on Many-to-Many Join
Linear regression assumes a noisy linear relationship between the

features and target variable: y = X𝛽 + e, where e is the error

term. This is consistent with our assumption so far if 𝑅Z = 𝑅1 Z
. . . 𝑅𝑘 is the population, and let us use the monomial semi-ring

to compute the expected 𝑠 . However, when many-to-many joins
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are involved, 𝑅Z often doesn’t represent the population as joins

generate Cartesian products for each matching key. This leads

to (1) duplicated tuples (the same y values are repeated) and (2)

unexpected independence between features from different relations

with the same join key, leading to biased estimation.

Our analysis focuses on an easy-to-explain case inspired by verti-

cal federated ML [32, 58], where we want to train linear regression

over relation 𝑅. However, 𝑅 is not directly observable, and each

party can only access a projection 𝜋 (𝑅). Multiple 𝜋 (𝑅) may have

many-to-many relationships on the common attribute (join key)

instead of the one-to-one relationships studied by federated ML.

The objective is to train linear regression on 𝑅 collectively.

Unbiased Estimator. Given 𝑅 of cardinality 𝑛, suppose there are

two parties holding different projections 𝜋𝐹1 (𝑅) and 𝜋𝐹2 (𝑅), and the
goal is to compute the 2-order monomial semi-ring 𝛾 (𝜋𝐹1∪𝐹2 (𝑅)).
However, factorized ML is trained on 𝑅Z = 𝜋𝐹1,𝐽 (𝑅) Z𝐽 𝜋𝐹2,𝐽 (𝑅)
with join key 𝐽 = 𝐹1 ∩ 𝐹2; 𝑅Z is likely to differ from 𝜋𝐹1∪𝐹2 (𝑅)
(unless 𝐽 is primary key), resulting in bias. To address this, we

propose an unbiased estimator for 𝑠 based on 𝑠′ = 𝛾 (𝑅Z).
Proposition 6 (Unbiased Estimator of 𝑠 over 𝑅). We make

the simplifying assumption that 𝐽 is uniformly distributed (if 𝑑 =

|𝑑𝑜𝑚(𝐽 ) |, each 𝑗 ∈ 𝐽 appears 𝑛/𝑑 times in 𝑅) and is not correlated
with any other attribute. Let 𝑠′ = 𝛾 (𝑅Z). Then,

𝑠 =


𝑓1 𝑓2 =

1−𝑛
1−𝑑

𝑠′ [ 𝑓1 𝑓2 ]
𝑠′ [𝑐 ] + 𝑛−𝑑

1−𝑑
𝑠′ [ 𝑓1 ]
𝑠′ [𝑐 ]

𝑠′ [ 𝑓2 ]
𝑠′ [𝑐 ]

for 𝑓1 ∈ 𝐹1 − 𝐽 , 𝑓2 ∈ 𝐹2 − 𝐽
𝑝 = 𝑠′ [𝑝]/𝑠′ [𝑐] for any other monomial 𝑝

𝑠 is an unbiased estimator of monomial semi-ring 𝑠 = 𝛾 (𝜋𝐹1∪𝐹2 (𝑅)).
The proof is in Appendix C. We assume vertical partitions of 𝑅,

but real-world datasets may also be horizontally partitioned; the

estimators could be refined for these cases. Our analysis studies the

base case, and the unbiased estimator can be recursively applied

for multiple joins and unions. Note that the estimators are post-

processing steps without compromising DP.

4.2 Simple Linear Regression Analysis
Building on the assumption in the previous section, this section stud-

ies the confidence bound of factorized linear regression. Compared

to [59], our analysis focuses on simple linear regression with one

feature, under less stringent assumptions; this scenario is sufficient

to show FPM’s advantages over other mechanisms, and motivates

optimization. We first consider a single relation case, then extend

to union and join. We’ll begin with defining the confidence bound,

which will be used to evaluate the utility of private estimators.

Definition 4 (Confidence Bound). Given parameter \ , the
(1 − 𝑝) confidence bound 𝐶 ˜\

ˆ\
(𝑝) for an private estimator ˜\ is:

𝐶
˜\
ˆ\
(𝑝) = inf {𝑏 : P[| ˜\ − ˆ\ | ≤ 𝑏] ≥ 1 − 𝑝}

where ˆ\ is the non-private estimator.

We consider relation 𝑅 [𝑥,𝑦] with one feature 𝑥 , target variable

𝑦, and cardinality 𝑛. We want to train 𝑦 = 𝛽𝑥 · 𝑥 + 𝛽0, and focus

on the parameter 𝛽𝑥 ; 𝛽𝑥 has an optimal non-privitized estimator

ˆ𝛽𝑥 =
�𝐸 [𝑥𝑦 ]−�𝐸 [𝑥 ]�𝐸 [𝑦 ]�𝐸 [𝑥2 ]−�𝐸 [𝑥 ]2 = 𝜎2

xy
/𝜎2

x
, where 𝜎2

xy
and 𝜎2

x
are polynomials

that can be derived from aggregeted 2-order monomials 𝛾 (𝑅). We

apply FPM to compute the privatized 2-order 𝛾 (𝑅) and study the

confidence bound of the privatized estimator
˜𝛽𝑥 . Note that more

familiar error definitions like mean-squared-error can be upper

bounded, roughly, by the square of the confidence bound.

Theorem 4.1 (Confidence Bound of
˜𝛽𝑥 ). For every 𝑝 where

𝜏1 < 1 holds, the (1 − 𝑝) confidence bound for ˜𝛽𝑥 is:

𝐶
˜𝛽𝑥
ˆ𝛽𝑥
(𝑝) ≤ 𝜏2 +

𝜏1

1 − 𝜏1

(
ˆ𝛽𝑥 + 𝜏2

)
where ˜𝛽𝑥 ( ˆ𝛽𝑥 ) is the private (non-private) estimate of 𝛽𝑥 . Let 𝐵1
and 𝐵2 be the (1 − 𝑝) confidence bounds for 𝜎2x and 𝜎2

xy
respectively.

Then 𝜏1 = 𝐵1/𝜎2x and 𝜏2 = 𝐵2/𝜎2x are both𝑂
(
𝐵4

ln(1/𝛿 ) ln(1/𝑝 )
𝜖2𝑛𝜎2

x

)
. The

probability is taken over the randomness of FPM.

The proof and extension to multi-features can be found in Ap-

pendix D. Theorem 4.1 demonstrates that the private estimator
˜𝛽𝑥

is asymptotically close to the non-private
ˆ𝛽𝑥 . The key factors in

reducing the discrepancy are 𝜏1, 𝜏2. APM and SF-2 have combinato-

rially large 𝜏1, 𝜏2 due to the budget splits. TPM requires quadratically

more data than FPM to achieve the same level of 𝜏1, 𝜏2.

Algorithm 2: FPM-OPT algorithm for Join

inputs :Relation 𝑅, Join Key 𝐴, Order 𝑘 , DP budget (𝜖, 𝛿)
output :Privatized Annotated Relation �̃�

1 foreach 𝑖 ∈ {0, . . . , 𝑘} do
2 Δ, 𝜖′, 𝛿 ′ = (if i odd: 2, else:

√
2) · 𝐵𝑖 , 𝜖/(𝑘 + 1), 𝛿/(𝑘 + 1);

3 𝜎, �̃� =
√︁
2 ln(1.25/𝛿 ′)Δ/𝜖′, 𝛾𝐴 (𝑅);

4 foreach 𝑎 ∈ 𝑑𝑜𝑚(𝐴) do
5 // add i.i.d. noises to each 𝑖 order monomial 𝑠;

6 �̃�(𝑎)={𝑠 : �̃�(𝑎) [𝑠] + 𝑒∼N(0, 𝜎2) for 𝑖 monomial 𝑠};

7 return �̃�;

4.3 Optimization: Better Noise Allocation
In Section 4.2, we analyzed the linear regression confidence bounds.

We propose to adjust noise allocation to improve the bounds further.

First, previous work (e.g., [15]) has shown that 𝛽𝑥 is usually the

parameter of interest instead of 𝛽0 for linear regression over the

union. In this case, we suggest each provider adding noises directly

to 𝜎2𝑥 , 𝜎
2

𝑥𝑦 , rather than monomials 𝑥2, 𝑥𝑦, 𝑥,𝑦. This reduces 𝜏1 and

𝜏2 by a factor of 𝑂 (𝐵2
√︁
ln(1/𝛿) ln(1/𝑝)/𝜖) (Appendix E).

Second, optimizing joins is more difficult as we add noise locally

to monomials to circumvent combinatorially large DP costs. How-

ever, we can reduce 𝜏1, 𝜏2 by𝑂 (𝐵2) through smart budget allocation

(Appendix E). Our insight is that lower-order monomials are multi-

plied by more monomials than higher-order ones. For example, in

Figure 6, 0-order monomials are multiplied by 0, 1, 2, 3-order ones,

while 3-order monomials only multiply with 0-order ones. Hence,

we shall decrease the noise to lower-order ones. FPM-OPT in Algo-

rithm 2 achieves this by dividing the DP budget across orders; lower

order monomials have lower sensitivity and thus fewer noises.
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5 EVALUATION
We evaluate FPM on NYC Open Data [11] corpus of 329 datasets

for an end-to-end dataset search. We then use ablation studies via

synthetic datasets to validate our theoretical analyses.

5.1 Real-world Experiments
Data andWorkload.We construct a large data corpus of 329 NYC

Open Data [11] datasets. Since prior DP mechanisms need to know

the number of requests up front, we create a workload of 5 requests

using the following random datasets:

• Regents [4] contains 2014-17 regents exams data.

• ELA [1] contains 2013-18 Early Learning Assessment (ELA) data.

• Gender [3] contains 2013-16 ELA data by grades and gender.

• Grad [5] contains 2016-17 graduation outcomes.

• Math [2] contains 2013-18 Math grades.

For each request, we look for a single dataset to join/union with the

requested dataset. We turn off data discovery so every dataset in

the platform is considered. By default, each dataset has DP budget

(𝜖 = 1, 𝛿 = 10
−6). We report the final 𝑟2 score evaluated non-

privately. For reliability, we run each request 10 times.

Baselines. We consider different DP mechanisms. Non-P doesn’t

use DP and provides 𝑟2 upper bound. FPM applies Algorithm 2

to each dataset. APM (Aggregate Privacy Mechanism), following

Wang [59], applies Algorithm 2 to the augmented dataset to pri-

vatize the aggregated sufficient statistics (and requires a trusted

search platform). We use attribute max-frequence from Flex [36] to

bound join sensitivity. Note that APM requires budget splits across

all augmentations. TPM (Per-tuple Privacy Mechanism) applies

Algorithm 2 to each tuple and uses half the 𝜖 to perturb the join

key with generalized random response [37]. SF is similar to TPM,
but applies the Laplace mechanism to each tuple with an amplified

budget then shuffles [26, 28]. Since SF doesn’t support joins (by

2
𝑛𝑑
-level aggregator), we only shuffle each dataset locally by 1

𝑠𝑡
-

level aggregators. In each case, we use a failure mechanism that

reports 𝑟2 = 0 if the privatized
�X𝑇X is not positive definite [15].

Results. Figure 7 shows the non-private 𝑟2 of 10 runs of private
data search for the 5 requests. FPM dominates the DP alternatives

and is ∼50−90% of the non-DP case. FPM’s performance depends

on dataset cardinality: the Gender dataset contains on average ∼40
tuples per join key (compared to >100 tuples per join key in other

datasets) and is more vulnerable to noise.

We next vary the number of datasets by sampling 𝑛𝑐𝑜𝑟𝑝∈{10, 50,
100, 300} datasets and rerunning each baseline over the smaller cor-

pus. Figure 8 reports the median 𝑟2. For a small corpus (𝑛𝑐𝑜𝑟𝑝 = 10),

APM outperforms FPM because it imputes noise to the aggregated

statistics across join key values and there are fewer budget splits,

while FPM has to add noise to the individual statistics for each join

key. TPM and SF have low 𝑟2 due to high noise.

Finally, we vary the number of requests (𝑛𝑟𝑒𝑞∈{1, 10, 50, 100})
by sending the same request 𝑛𝑟𝑒𝑞 times, and report median 𝑟2.

Figure 9 shows that each baseline is almost invariant to 𝑛𝑟𝑒𝑞 , and

FPM dominates. In theory, APM is worse for more requests but is

already poor due to the large dataset corpus.

5.2 Synthetic Dataset Experiments
We next validate our theoretical analysis of linear regression using

synthetic data, and conduct ablation tests to study the impact of

various parameters (number of tuples 𝑛, DP budget 𝜖, 𝛿 , corpus size

𝑛𝑐𝑜𝑟𝑝 , number of requests 𝑛𝑟𝑒𝑞 and join key domain size 𝑑).

5.2.1 Setup. We generate datasets by first creating a symmetric

positive-definite matrix (make_spd_matrix in 𝑠𝑘𝑙𝑒𝑎𝑟𝑛) as the covari-

ance X′𝑇X′
. We then sample from a multivariate normal distribu-

tion with this covariance to create a relation. To ensure the ℓ2 norms

of tuples ≤ 𝐵=5, we resample for any tuples that exceed this limit.

By default, for union, we generate relations with 𝑛 = 1000 tuples

and 3 numerical attributes [𝑦, 𝑥1, 𝑥2]. For join, we generate relations
with 𝑛 = 10000 tuples and include a categorical join key 𝐽 uniformly

distributed with a domain size of𝑑 = 100 . We construct two vertical

partitions with projections [𝑦, 𝑥1, 𝐽 ] and [𝑥2, 𝐽 ], respectively. We

start with 𝑛𝑐𝑜𝑟𝑝 = 2 datasets, 𝑛𝑟𝑒𝑞 = 1 request.

We will report the ℓ2 distance to the non-private sufficient sta-

tistics (𝑠 error) and regression parameter (𝛽 error) as metrics. Each

experiment will be repeated 100 times, and we will present the

medians (dots), as well as the 25𝑡ℎ and 75𝑡ℎ percentiles (error bars).

5.2.2 DP for Union. Baselines include APM, TPM (same as in Sec-

tion 5.1), SF-1, which shuffles tuples locally, SF-2, which shuffles

the unioned dataset, and FPM using Algorithm 1 rather than Algo-

rithm 2 (which is for join).

First, we vary𝑛∈{10, 100, 500, 1𝐾, 10𝐾}. Figure 10a and Figure 10b
report 𝑠 and 𝛽 errors. Since there are 𝑛𝑐𝑜𝑟𝑝=2 datasets, APM and

FPM perform similarly. In contrast,TPM requires quadraticallymore

data to achieve the same 𝑠 errors, consistent with our analysis in

Section 3.4. SF’s amplification is not significant for small 𝑛, when

it’s needed most, and both variants have high 𝑠 errors. 𝛽 error

eventually converges to 0 for all baselines, but FPM does so at a

comparable rate to APM (𝑛=500 vs. 10𝐾 for the others).

Figure 10c shows that 𝛽 error naturally correlates with 𝑠 error,

and higher 𝑠 error increases the chance of failure (𝛽 error =∞). The

remaining results will focus on 𝛽 error, as it is of interest.

Next, we vary the DP budget 𝜖=0.1 or 𝛿=0 (pure DP). The results
are shown in Figure 10d and Figure 10e, respectively. For 𝜖=0.1,

the plot shifts right due to a smaller budget. In the case of pure DP
with 𝛿=0, FPM, APM and TPM can adapt to it by applying Laplace

mechanism, achieving similar performance. In contrast, SF-1 and

SF-2 fail as only approximate DP is supported.

Figure 10f and Figure 10g vary the number of datasets and re-

quests 𝑛𝑐𝑜𝑟𝑝 , 𝑛𝑟𝑒𝑞∈{1, 5, 10, 50, 100}, respectively. FPM’s 𝛽 error is

flat. TPM, SF-1 and SF-2 frequently fail due to high noise, while

APM only performed well when 𝑛𝑐𝑜𝑟𝑝≤5 or 𝑛𝑟𝑒𝑞≤10. APM is hence
unsuitable for large data corpora.

Figure 10h reports linear regression optimization benefit in Sec-

tion 4.3. For a two-attribute dataset 𝑅 [𝑦, 𝑥], while FPM adds noise

to monomials (𝑥,𝑦, 𝑥2, 𝑦2, 𝑥𝑦), FPM-OPT adds noise to polynomials

(𝜎2𝑥 , 𝜎
2

𝑥𝑦 ) because we only care about 𝛽𝑥 . We find that FPM-OPT
reduces the 𝛽 error and failure likelihood, especially for 𝑛<100.

5.2.3 DP for Join. We evaluate different DP mechanisms over the

join. Baselines include FPM-OPT, which uses a smart allocation

strategy to reduce the noise of lower order statistics, as discussed

in Section 4.3. SF-2 doesn’t support joins, so it is not reported.
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Figure 7: Utility (non-privatized 𝑟2) of the returned combinations of datasets searched by different baselines over 10 runs, with
the median indicated by a red cross. FPM exhibits significantly better utility than the other baselines.
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Figure 8: Utility of the returned combinations of datasets searched by different baselines when varying the corpus size 𝑛𝑐𝑜𝑟𝑝 .
FPM is scalable for large corpus, while APM only performs well for small 𝑛𝑐𝑜𝑟𝑝 .
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Figure 9: Utility of the returned combinations of datasets searched by different baselines when varying the number of requests
𝑛𝑟𝑒𝑞 . FPM consistently performs well, while the others either suffer from large noises (TPM, SF) or budget splits (APM).
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(f) 𝛽 error when varying 𝑛𝑐𝑜𝑟𝑝 .
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Figure 10: Ablation tests for unions: (a). (b). All baselines show reduced 𝑠 and 𝛽 errors as 𝑛 increases, with FPM and APM exhibiting
the least error; (c). Larger 𝑠 error results in higher 𝛽 errors and a greater risk of failure; (d). For 𝜖 = 0.1, the 𝛽 error plot shifts to
the right; (e). For pure DP with 𝛿 = 0, FPM can adjust to it and offer comparable utility, while SF fails; (f). (g). FPM is scalable for
large corpora with large numbers of requests, while APM deteriorates significantly when 𝑛𝑐𝑜𝑟𝑝 > 5 or 𝑛𝑟𝑒𝑞 > 10; (h). For simple
linear regression when only 𝛽𝑥 is of interest, FPM-OPT reduces the 𝛽 errors and failure risk, particularly for small 𝑛.
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Figure 11: Ablation tests for joins: (a,b). FPM, FPM-OPT and
APM provide low error when varying 𝑑 and 𝑛, while TPM and
SF are dominated by high noises (c,d). FPM, FPM-OPT show
scalability for large repositories with numerous requests,
whereas APM has high errors when 𝑛𝑐𝑜𝑟𝑝>5 or 𝑛𝑟𝑒𝑞>10.
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Figure 12: 𝛽 error for naive and unbiased estimators over join.
The unbiased estimator dominates the naive one.

We use 𝑛𝑐𝑜𝑟𝑝 = 2 datasets: we fix cardinality 𝑛 = 10𝐾 but vary

join key domain size 𝑑 ∈ {10, 50, 100, 200}, then fix 𝑑 = 100 but

vary 𝑛 ∈ {100, 5𝐾, 10𝐾, 50𝐾}. The results are shown in Figure 11a

and Figure 11b, respectively. FPM, FPM-OPT and APM have low 𝛽

error, while TPM and SF have high failure rates. FPM-OPT outper-

forms FPM due to better noise allocation. APM outperforms FPM
and FPM-OPT at large 𝑑 or small 𝑛 because APM adds noise directly

to the aggregated statistics across join keys, resulting in a smaller

amount of noise. In contrast, FPM adds noise for each join key value.

However, for large 𝑛, FPM and FPM-OPT outperform APM because

it has high sensitivity due to high join fanouts [36].

Figure 11c and Figure 11d respectively vary the number of datasets

and requests: 𝑛𝑐𝑜𝑟𝑝 , 𝑛𝑟𝑒𝑞∈{1, 5, 10, 50, 100}. Both TPM and SF have

high failure rates, andFPM-OPT outperformsFPM.FPM andFPM-OPT
scale to arbitrary numbers of datasets and requests, while APM is

restricted to 𝑛𝑐𝑜𝑟𝑝≤5 or 𝑛𝑟𝑒𝑞≤10.

5.2.4 Join Unbiased estimator. Here, we compare the 𝛽 error of

the unbiased estimator proposed in Section 4.1 to the naive esti-

mator over many-to-many joins. We first fix the number of tuples

𝑛 = 10𝐾 but vary join key domain size 𝑑 ∈ {10, 50, 100, 200}, then
fix 𝑑 = 100 but vary 𝑛 ∈ {100, 5𝐾, 10𝐾, 50𝐾}, and report the re-

sults in Figure 12a and Figure 12b respectively. As 𝑑 increases, the

errors of the unbiased estimator converge to 0, while the biased

estimator diverges as it fails to account for many-to-many join.

When 𝑛 = 100, the naive estimator achieves similar performance, as

each join key has only one tuple (so one-to-one join without bias).

However, increasing 𝑛 introduces duplications and independence

(for many-to-many join). The unbiased estimator reduces the noise

and performs better than the naive estimator.

6 RELATEDWORKS
Dataset search. Traditional data discovery focuses on augmentable

(i.e., joinable or unionable) datasets [17, 29], whereas recent dataset

search platforms [19, 43, 45, 51] are based on data augmentation

for ML tasks. However, none addresses privacy concerns.

Differential Privacy forDatabases.Differentially private databases
can query over multiple tables [36, 40, 61]. They apply DP mecha-

nisms to query results over joins and unions. Notably, join poses a

significant DP challenge due to the exponential sensitivity growth

along the join path. FPM may offer a solution by decomposing join

query into smaller, bounded-sensitivity statistics.

Federated ML. These methods let each untrusted party compute

and privatize their local gradients for horizontal [54, 55, 60, 65] or

vertical [32, 58] federated ML, which are then combined to train the

final model. However, the gradient is specific to training a single

model. In contrast, data search repeatedly trains new models to

evaluate candidate augmentations, requiring budget splits.

Differentially Private Sufficient Statistics. Previous works use
sufficient statistics [35] for generalized linear models and apply per-

turbations [41] to guarantee DP. For linear regression, sufficient sta-

tistics perturbation, particularly with regularization, outperforms

other GDP mechanisms including objective perturbation and noisy

SGD [14, 59]. However, they only consider ML on a single dataset.

Factorized ML. Factorized ML decomposes ML models into semi-

ring queries, designs algebraic operators to combine them, and

achieves asymptotically lower time complexity. They support mod-

els like ridge regression [53], random forests [33], SVM [38], and

factorization machine [52]. None are differentially private.

7 CONCLUSIONS
Saibot is a differentially private data search platform that searches

large corpora to find datasets to improve ML performance via aug-

mentation. Saibot employs FPM, a novel mechanism that privatizes

sufficient semi-ring statistics.. In a deep study of linear regression,

we propose an unbiased estimator for many-to-many joins, prove

parameter bounds under augmentations, and propose an optimiza-

tion to allocate DP budget better. On a >300 dataset corpus, FPM
achieves an 𝑟2 score (∼50−90%) of non-private search, while other
mechanisms report negligible 𝑟2 scores <0.02.
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Saibot: A Differentially Private Data Search Platform

Table 1: Notation

Notation Description
𝑅𝑖 relations of providers/requesters.

𝑛 size of each relation.

𝐽 , 𝐷𝑜𝑚(𝐽 ), 𝑑 join key, domain of join key, domain size.

𝐵 the ℓ2 distance upper bound of each tuple in each

relation.

𝜎2
x
, 𝜎2

xy
the empirical estimation of the variance and covari-

ance.

𝜎2
x
, 𝜎2

xy
the privatized empirical estimation of the variance

and covariance.

𝐵1, 𝐵2 1−𝑝 confidence bound on |𝜎2
x
−𝜎2

x
| and |𝜎2

xy
−𝜎2

xy
|.

A FPM SENSITIVITY
For union, query 𝑞𝑢 : D𝑛 −→ S where datasets in D𝑛

contains

𝑚 features and S = {𝑣 | 𝑣 ∈ R𝑚𝑖
, 𝑖 ∈ {0, . . . , 𝑘}}. 𝑞𝑢 returns a set

of vectors 𝑠 ∈ S containing the sum of 𝑘-order monomial semi-

ring across all tuples. For analysis convenience, we will overload

the notation a bit and treat 𝑠 as a single vector by concatenating

{𝑣}𝑣∈𝑠 . Let 𝑡1, 𝑡2 ∈ D𝑛
and 𝑡𝑖

1
, 𝑡𝑖
2
be vectors of 𝑖-order monomial

with respect to 𝑡1 [𝑓1], . . . , 𝑡1 [𝑓𝑚] and 𝑡2 [𝑓1], . . . , 𝑡2 [𝑓𝑚]. Let 𝜎 (𝑘)
denote the set of series [𝑘1, . . . , 𝑘𝑚] such that 𝑘𝑖 ∈ N and

∑
𝑘𝑖 = 𝑘 .

The squared distance between 𝑡𝑘
1
and 𝑡𝑘

2
can be computed as∑︁

[𝑘1,...,𝑘𝑚 ]
∈𝜎 (𝑘 )

(
𝑚∏
𝑖=1

𝑡1 [𝑓𝑖 ]𝑘𝑖 −
𝑚∏
𝑖=1

𝑡2 [𝑓𝑖 ]𝑘𝑖 )2

≤
∑︁

[𝑘1,...,𝑘𝑚 ]
∈𝜎 (𝑘 )

(
𝑘

𝑘1, . . . , 𝑘𝑚

)
(
𝑚∏
𝑖=1

𝑡1 [𝑓𝑖 ]𝑘𝑖 −
𝑚∏
𝑖=1

𝑡2 [𝑓𝑖 ]𝑘𝑖 )2

By multinomial theorem, we may rewrite the last equation as

(
𝑚∑︁
𝑖=1

𝑡1 [𝑓𝑖 ]2)𝑘 + (
𝑚∑︁
𝑖=1

𝑡2 [𝑓𝑖 ]2)𝑘 − 2(
𝑚∑︁
𝑖=1

𝑡1 [𝑓𝑖 ]𝑡2 [𝑓𝑖 ])𝑘

≤ 2𝐵2𝑘 − 2(
𝑚∑︁
𝑖=1

𝑡1 [𝑓𝑖 ]𝑡2 [𝑓𝑖 ])𝑘

That is, when 𝑘 is even, the latter term is strictly positive. Hence

∥𝑡𝑘
1
− 𝑡𝑘

2
∥2 ≤ 2𝐵2𝑘 . Let 𝐷1, 𝐷2 ∈ D𝑛

be two neighbouring datasets

differ in one tuple, 𝑡1 and 𝑡2. The sensitivity of 𝑞𝑢 (·) can be com-

puted as

Δ𝑞𝑢 = max ∥𝑞𝑢 (𝐷1) − 𝑞𝑢 (𝐷2)∥ ≤

√√√
𝑘∑︁
𝑖=1

12Z+1 (𝑖)4𝐵2𝑖 + 12Z (𝑖)2𝐵2𝑖

For join, we inherit the notations from the union case and let

ℓ be the number of join keys. 𝑞 𝑗 : D𝑛 −→ S returns a set of

vectors 𝑠 ∈ S where 𝑠 concatenates vectors returned by 𝑞𝑢 on each

partition of tuples for each join key. Consider two cases: (1) 𝑡1 and

𝑡2 have the same join key (2) 𝑡1 and 𝑡2 have different join keys. In

the former case,

Δ𝑞 𝑗
= max ∥𝑞 𝑗 (𝐷1) − 𝑞 𝑗 (𝐷2)∥2

≤

√√√
𝑘∑︁
𝑖=1

12Z+1 (𝑖)4𝐵2𝑖 + 12Z (𝑖)2𝐵2𝑖

In the latter case,

Δ𝑞 𝑗
= max ∥𝑞 𝑗 (𝐷1) − 𝑞 𝑗 (𝐷2)∥2

= max

√√√
𝑘∑︁
𝑖

∥𝑡𝑖
1
∥2 +

𝑘∑︁
𝑖

∥𝑡𝑖
2
∥2

≤

√√√
max

𝑘∑︁
𝑖

∥𝑡𝑖
1
∥2 +max

𝑘∑︁
𝑖

∥𝑡𝑖
2
∥2

≤

√√√
2

𝑘∑︁
𝑖=0

𝐵2𝑖

Hence,Δ𝑞 𝑗
= max(

√︃∑𝑘
𝑖=1 12Z+1 (𝑖)4𝐵2𝑖 + 12Z (𝑖)2𝐵2𝑖 ,

√︃
2

∑𝑘
𝑖=0 𝐵

2𝑖 )

B ERROR ANALYSIS
For a single data provider, with relation𝑅 where |𝑅 | = 𝑛 and 𝑖 be any
integer from 1 to 𝑘 . LDP computes [𝑓 , 𝑓 2, . . . , 𝑓 𝑘 ] for each tuple and
adds noise to each of them. By similar analysis to that of FPM, LDP’s
sensitivity is the same as Δ in FPM for both union and join. Hence,

for each tuple, 𝑡 , from 𝑅, 𝑡 [𝑓 𝑖 ] ∼ 𝑡 [𝑓 𝑖 ] + N (0, (2 ln(1.25/𝛿)Δ2/𝜖2).
The empirical expectation of 𝑓 𝑖 can be computed as

𝑓 𝑖LDP =
1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
)
+ 𝑒𝑖 𝑒𝑖 ∼ N(0, 2 ln(1.25/𝛿)Δ2/𝑛𝜖2)

Putting everything together, and by the assumption that 𝑘 is a small

constant, we have

𝐸 [∥𝑠′LDP − 𝑠 ∥] = 𝐸

√√√

𝑘∑︁
𝑖=1

(
𝑓 𝑖LDP − 1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
))

2
≤

√√√√√
𝐸


𝑘∑︁
𝑖=1

(
𝑓 𝑖LDP − 1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
))

2
=

√√√
𝑘∑︁
𝑖=1

𝐸 [𝑒2
𝑖
]

= 𝑂 (Δ/
√
𝑛𝜖)

For FPM, the only difference is that

𝑓 𝑖FPM ∼ 1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
)
+ 𝑒𝑖 𝑒𝑖 ∼ N(0, 2 ln(1.25/𝛿)Δ2/𝑛2𝜖2)

Following the same line of derivation,

𝐸 [∥ ˜𝑠FPM − 𝑠 ∥] = 𝑂 (Δ/𝑛𝜖)
However, GDP needs to account for any possible combination of

a single buyer and a subset of sellers, where each party’s privacy

needs to be protected. Specifically, each buyer appears in 2
𝑛𝑐𝑜𝑟𝑝 − 1

combinations, since each buyer requires at least one seller. On the

other hand, for a fixed buyer, each seller is involved in 2
𝑛𝑐𝑜𝑟𝑝−1

combinations. Hence, each seller will appear in 𝑛𝑟𝑒𝑞2
𝑛𝑐𝑜𝑟𝑝−1

combi-

nations in total. Because each seller and buyer have privacy budget

(𝜖, 𝛿), in order to provide privacy guarantees for each party in any
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combination, the amount of privacy budget spent on perturbing

pre-normalized 𝑠 is 𝜖′ = min(𝜖/(2𝑛𝑐𝑜𝑟𝑝 − 1), 𝜖/𝑛𝑟𝑒𝑞2𝑛𝑐𝑜𝑟𝑝−1) and
𝛿 ′ = min(𝛿/(2𝑛𝑐𝑜𝑟𝑝 − 1), 𝛿/𝑛𝑟𝑒𝑞2𝑛𝑐𝑜𝑟𝑝−1)

𝑓 𝑖GDP =
1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
)
+ 𝑒𝑖 𝑒𝑖 ∼ N(0, 2 ln(1.25/𝛿 ′)Δ2/𝑛2𝜖′2)

Based on the same line of analysis above

𝐸 [∥ ˜𝑠GDP − 𝑠 ∥] = 𝑂 (𝑛𝑟𝑒𝑞2𝑛𝑐𝑜𝑟𝑝−1Δ/𝑛𝜖)
Now we consider SF-1, based on [26], it suffice to guaran-

tee 𝜖/
√
𝑛-DP for local responses to achieve (𝜖, 𝛿)-DP from the

central’s perspective, where each tuple 𝑡 in 𝑅 satisfies 𝑡 [𝑓 𝑖 ] ∼
𝑡 [𝑓 𝑖 ] + Lap(Δ/

√
𝑛𝜖). Then we have�𝑓 𝑖SF-1 =
1

𝑛

∑︁
𝑡 ∈𝑅

(𝑡 [𝑓 𝑖 ] + 𝑒𝑡 ) 𝑒𝑡 ∼ Lap(Δ/
√
𝑛𝜖)

Then, we have

𝐸 [∥ �SF-1 − 𝑠 ∥] = 𝐸

√√√

𝑘∑︁
𝑖=1

( �𝑓 𝑖SF-1 − 1

𝑛

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓 𝑖 ]
))

2
≤

√√√√√ 𝑘∑︁
𝑖=1

𝐸


(
1

𝑛

∑︁
𝑡 ∈𝑅

𝑒𝑡

)
2

Since 𝐸

[(
1

𝑛

∑
𝑡 ∈𝑅 𝑒𝑡

)]
= 0, it follows that

𝐸


(
1

𝑛

∑︁
𝑡 ∈𝑅

𝑒𝑡

)
2 = 𝑉𝑎𝑟

(
1

𝑛

∑︁
𝑡 ∈𝑅

𝑒𝑡

)
=

Δ2

𝑛2𝜖2

Substituting back to the equation, and based on assumption that

𝑘 is small, we have

𝐸 [∥ �𝑠SF-1 − 𝑠 ∥] = 𝑂 (Δ/𝑛𝜖)
For SDP-2, just like GDP, it also needs to account for all pos-

sible combination of a single buyer and any subsets of sellers in

the centralized shuffler. However, the differences are that SF-2
allows each combination’s privacy guarantee to be amplified by

an amount of 𝑂 (
√
𝑛), and that SF-2 draw random noises from

Laplace distribution instead of Gaussian distribution. That is,

�𝑓 𝑖SF-2 =
1

𝑛

∑︁
𝑡 ∈𝑅

(𝑡 [𝑓 𝑖 ] + 𝑒𝑡 ) 𝑒𝑡 ∼ Lap(Δ/
√
𝑛𝜖′)

Hence, the expected utility can be computed following the same

line of derivation of SF-1. That is

𝐸 [∥ �𝑠SF-2 − 𝑠 ∥] = 𝑂 (Δ/𝑛𝜖′) = 𝑂 (𝑛𝑟𝑒𝑞2𝑛𝑐𝑜𝑟𝑝−1Δ/𝑛𝜖)

C UNBIASED PROOF
Wemake the simplifying assumption that 𝐽 is uniformly distributed:

if 𝑑 = |𝑑𝑜𝑚(𝐽 ) |, then each 𝑗 ∈ 𝐽 appears 𝑛/𝑑 times in 𝑅. More-

over, the projection operator 𝜋 will not remove duplicates in 𝑅 so

|𝜋 𝐽 ,𝑓1 (𝑅) | = |𝜋 𝐽 ,𝑓2 (𝑅) | = 𝑛.

Proposition 7 (Expected 𝑠 over 𝑅Z). Assume that 𝑅Z is the
population. For any other 1,2-order monomial 𝑝 ,

𝐸 [𝑝] = 𝑠 [𝑝]/𝑠 [𝑐]
where c is the count (0-order monomial). Then 𝐸 [𝑝] is the expected 𝑠
over 𝑅Z .

Proposition 8 (Unbiased Estimator of 𝑠 over 𝑅).

�𝐸 [𝑝] = 
𝑓1 𝑓2 =

1−𝑛
1−𝑑

𝑠 [ 𝑓1 𝑓2 ]
𝑠 [𝑐 ] + 𝑛−𝑑

1−𝑑
𝑠 [ 𝑓1 ]
𝑠 [𝑐 ]

𝑠 [ 𝑓2 ]
𝑠 [𝑐 ]

for 𝑓1 ∈ 𝐹1, 𝑓2 ∈ 𝐹2
𝑝 = 𝑠 [𝑝]/𝑠 [𝑐] for any other monomial 𝑝

𝑠 is an unbiased estimator of 𝑠 .

Proof. We demonstrate that, for any 1,2-order monomial where

features are from the same relation, 𝐸 [𝑠 [𝑝]/𝑠 [𝑐]] = 𝐸 [𝑝].
𝑠 [𝑐] = 𝑛 · 𝑛/𝑑

𝐸 [𝑠 [𝑓 ]/𝑠 [𝑐]] = 𝐸 [(
∑︁
𝑡 ∈𝑅

𝑡 [𝑓 ] · 𝑛/𝑑)/(𝑛 · 𝑛/𝑑)] =
∑︁
𝑡 ∈𝑅

𝐸 [𝑡 [𝑓 ]]/𝑛 = 𝐸 [𝑓 ]

𝐸 [𝑠 [𝑓1 𝑓2]/𝑠 [𝑐]] = 𝐸 [(
∑︁
𝑡 ∈𝑅

𝑡 [𝑓1] · 𝑡 [𝑓2] · 𝑛/𝑑)/(𝑛 · 𝑛/𝑑)]

=
∑︁
𝑡 ∈𝑅

𝐸 [𝑡 [𝑓1] · 𝑡 [𝑓2]]/𝑛 = 𝐸 [𝑓1 𝑓2]

The first equality is because for each join key, the cartesian product

is computed, leading to duplication of tuples with the same join

key in both tables by 𝑛/𝑑 times. The count is also increased by 𝑛/𝑑 ,
thus resulting in the equality 𝑠 [𝑝]/𝑠 [𝑐] = 𝐸 [𝑝].

However, this equality does not hold for the 𝑓1 𝑓2, where 𝑓1 and

𝑓2 are from different relations. In this case, 𝑓1 from 𝑅1 is paired with

all 𝑓2 from 𝑅2 with the same join key, but the information about

which 𝑓2 is paired with 𝑓1 in original 𝑅 is lost. Nonetheless, we can

still estimate 𝐸 [𝑓1 𝑓2] by exploiting the covariance across groups.

We first analyze 𝐸 [𝑓1 𝑓2] for a single join key value 𝑗 . We use

notation 𝑠 𝑗 to denote the monomial semi-ring for the join key value

𝑘 . Consider random variable of the average:

𝑠
𝑗

1
=𝑠 𝑗 [𝑓1]/𝑠 𝑗 [𝑐] = ©«

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓1] · 𝑛/𝑑ª®¬ /(𝑛/𝑑)2 =
∑︁

𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓1]
𝑛/𝑑

𝑠
𝑗

2
=𝑠 𝑗 [𝑓2]/𝑠 𝑗 [𝑐] = ©«

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓2] · 𝑛/𝑑ª®¬ /(𝑛/𝑑)2 =
∑︁

𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓2]
𝑛/𝑑

𝑠
𝑗

1
and 𝑠

𝑗

2
can be understood as the mean of 𝑓1 and 𝑓2 from the

sample 𝜎 𝑗 (𝑅). It is obvious that 𝐸 [𝑠 𝑗
1
] = 𝐸 [𝑓1] and 𝐸 [𝑠 𝑗

2
] = 𝐸 [𝑓2].

From the definition of covariance, we have:

𝐸 [𝑠 𝑗
1
𝑠
𝑗

2
] = 𝑐𝑜𝑣 (𝑠 𝑗

1
, 𝑠

𝑗

2
) + 𝐸 [𝑠 𝑗

1
]𝐸 [𝑠 𝑗

2
]

= 𝑐𝑜𝑣
©«

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓1]
𝑛/𝑑 ,

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓2]
𝑛/𝑑

ª®¬ + 𝐸 [𝑓1]𝐸 [𝑓2]
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We next compute the 𝑐𝑜𝑣 :

𝑐𝑜𝑣
©«

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓1]
𝑛/𝑑 ,

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑡 [𝑓2]
𝑛/𝑑

ª®¬ =
𝑑2

𝑛2

∑︁
𝑡1∈𝜎 𝑗 (𝑅)
𝑡2∈𝜎 𝑗 (𝑅)

𝑐𝑜𝑣 (𝑡1 [𝑓1], 𝑡2 [𝑓2])

=
𝑑2

𝑛2

∑︁
𝑡 ∈𝜎 𝑗 (𝑅)

𝑐𝑜𝑣 (𝑡 [𝑓1], 𝑡 [𝑓2])

=
𝑑

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2)

The first line is by the property of covariance and the second line

is by the independence between tuples. Therefore,

𝐸 [𝑠 𝑗
1
𝑠
𝑗

2
] = 𝑑

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2]

Next, consider the random variables across join keys:

𝑠1 =𝑠 [𝑓1]/𝑠 [𝑐] =
∑︁
𝑡 ∈𝑅

𝑡 [𝑓1]/𝑛

𝑠2 =𝑠 [𝑓2]/𝑠 [𝑐] =
∑︁
𝑡 ∈𝑅

𝑡 [𝑓2]/𝑛

𝑠1,2 =𝑠 [𝑓1 𝑓2]/𝑠 [𝑐] =
∑︁

𝑗∈𝑑𝑜𝑚 ( 𝐽 )
𝑠
𝑗

1
· 𝑠 𝑗

2
/𝑑

where 𝑠1 and 𝑠2 are the average across join keys. 𝑠1,2 is the average

products across join keys. It is obvious that 𝐸 [𝑠1] = 𝐸 [𝑓1], 𝐸 [𝑠2] =
𝐸 [𝑓2]. We next study 𝐸 [𝑠1𝑠2] and 𝐸 [𝑠1,2]:

𝐸 [𝑠1𝑠2] = 𝑐𝑜𝑣 (𝑠1, 𝑠2) + 𝐸 [𝑠 𝑗
1
]𝐸 [𝑠 𝑗

2
]

= 𝑐𝑜𝑣

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓1]/𝑛,
∑︁
𝑡 ∈𝑅

𝑡 [𝑓2]/𝑛
)
+ 𝐸 [𝑓1]𝐸 [𝑓2]

Similar as before,

𝑐𝑜𝑣

(∑︁
𝑡 ∈𝑅

𝑡 [𝑓1]/𝑛,
∑︁
𝑡 ∈𝑅

𝑡 [𝑓2]/𝑛
)
=

1

𝑛2

∑︁
𝑡1∈𝑅
𝑡2∈𝑅

𝑐𝑜𝑣 (𝑡1 [𝑓1], 𝑡2 [𝑓2])

=
1

𝑛2

∑︁
𝑡 ∈𝑅

𝑐𝑜𝑣 (𝑡 [𝑓1], 𝑡 [𝑓2]) =
1

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2)

Therefore:

𝐸 [𝑠1𝑠2] =
1

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2]

Finally,

𝐸 [𝑠1,2] =
∑︁

𝑗∈𝑑𝑜𝑚 ( 𝐽 )
𝐸 [𝑠 𝑗

1
· 𝑠 𝑗

2
]/𝑑 =

𝑑

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2]

Putting everything together, we show that
1−𝑛
1−𝑑 𝑠1,2 +

𝑛−𝑑
1−𝑑 𝑠1 · 𝑠2

is an unbiased estimator of 𝐸 [𝑓1 𝑓2]:

𝐸 [ 1 − 𝑛
1 − 𝑑 𝑠1,2 +

𝑛 − 𝑑
1 − 𝑑 𝑠1 · 𝑠2] =

1 − 𝑛
1 − 𝑑 𝐸 [𝑠1,2] +

𝑛 − 𝑑
1 − 𝑑 𝐸 [𝑠1𝑠2]

=
1 − 𝑛
1 − 𝑑 (

𝑑

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2])+

𝑛 − 𝑑
1 − 𝑑 (

1

𝑛
𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2])

=𝑐𝑜𝑣 (𝑓1, 𝑓2) + 𝐸 [𝑓1]𝐸 [𝑓2] = 𝐸 [𝑓1 𝑓2]

The first line is by the linearity of expectation, and the last line is

by the definition of covariance.

□

D CONFIDENCE BOUND OF LINEAR
REGRESSION

Let 𝜎 =
√︁
2 ln(1.25/𝛿)Δ/𝜖 where Δ = 𝑂 (𝐵2). We are interested in

𝑛, 𝐵 → ∞ and 𝜖, 𝛿, 𝑝 → 0 in our analysis. Hence𝜎 = 𝑂

(
𝐵2

√
ln(1/𝛿 )
𝜖

)
.

The privatized empirical expectation of the moments are defined as�𝐸 [𝑋 ] = �𝐸 [𝑋 ] + 𝑒1,�𝐸 [𝑋 2] = �𝐸 [𝑋 2] + 𝑒2, �𝐸 [𝑋𝑌 ] = �𝐸 [𝑋𝑌 ] + 𝑒3 and�𝐸 [𝑌 ] = �𝐸 [𝑌 ] + 𝑒4. Then, we have 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∼ N(0, 𝜎2/𝑛2)

LemmaD.1 (High-probability boundon𝜎𝑥 ). Given𝜎2x = �𝐸 [𝑋 2]−�𝐸 [𝑋 ]2 and 𝜎2
x
= �𝐸 [𝑋 2] − �𝐸 [𝑋 ]2, with probability at least 1 − 𝑝 ,

|𝜎2
x
− 𝜎2

x
| = 𝑂 (𝐵1) where

𝐵1 =
𝐵4 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛

Proof. By assumption that each tuple’s ℓ2 norm is bounded by

𝐵, each feature must also be bounded by 𝐵. Based on Gaussian tail

bound, with probability at least 1 − 𝑝/4, |𝑒𝑖 | ≤ 𝜎
√︁
2 ln(8/𝑝)/𝑛.

|𝜎2
x
− 𝜎2

x
| = |𝑒1 − 2𝑒2

∑︁
𝑥/𝑛 − 𝑒2

2
|

≤ |𝑒1 | + |2𝑒2
∑︁

𝑥/𝑛 | + |𝑒2
2
|

≤
𝜎
√︁
2 ln(8/𝑝)
𝑛

(
1 + 2𝐵 +

𝜎
√︁
2 ln(8/𝑝)
𝑛

)
= 𝑂

(
𝐵2

√︁
ln(1/𝛿) ln(1/𝑝)

𝜖𝑛
+ 𝐵

2
ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛2

)
= 𝑂

(
𝐵4 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛

)
□

Similarly, D.1 can be used to derive the high probability bound

on 𝜎2𝑥𝑦 , that is

|𝜎2
xy

− 𝜎2
xy
| ≤ 𝐵2 = 𝑂

(
𝐵4 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛

)
Since the condition to satisfy both bounds coincide, with probability

at least 1 − 𝑝 , |𝜎2𝑥 − 𝜎2𝑥 | ≤ 𝐵1 and |𝜎2𝑥𝑦 − 𝜎2𝑥𝑦 | ≤ 𝐵2.

Let

𝜏1 = 𝐵1/𝜎2𝑥 = 𝑂

(
𝐵4 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛𝜎2
x

)
= 𝜏2

When 𝜏1, 𝜏2 < 1 and with probability at least 1 − 𝑝 , we may prove

4.1 as
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Proof.

| ˆ𝛽𝑥 − ˜𝛽𝑥 | =

������𝜎2xy𝜎2
x

−
𝜎2
xy

𝜎2
x

������ =
������𝜎2xy𝜎2

x

−
𝜎2
xy

𝜎2
x

+
𝜎2
xy

𝜎2
x

−
𝜎2
xy

𝜎2
x

������
≤

|𝜎2
xy

− 𝜎2
xy
|

𝜎2
x

+ 𝜎2
xy

·
����𝜎2x−1 − 𝜎2x−1����

=
|𝜎2
xy

− 𝜎2
xy
|

𝜎2
x

+ 𝜎2
xy

· |𝜎
2

x
− 𝜎2

x
|

𝜎2
x
𝜎2
x

≤ 𝜏2 + (𝜎2
xy

+ 𝜏2 · 𝜎2x)
𝜏1𝜎

2

x

(1 − 𝜏1) (𝜎2x)2

= 𝜏2 +
𝜏1

1 − 𝜏1
©«
𝜎2
xy

𝜎2
x

+ 𝜏2ª®¬ = 𝜏2 +
𝜏1

1 − 𝜏1

(
ˆ𝛽𝑥 + 𝜏2

)
□

Extension to Factorized ML. The confidence bounds can be ex-

tended for factorized ML. The difference boils down to 𝐵1, and the

rest are the same. For union, let 𝑅 = 𝑅1 ∪ 𝑅2 ... ∪ 𝑅𝑘 where |𝑅𝑖 | = 𝑛
and 𝑘 → ∞. Then, for 𝑒𝑖 ∼ N(0, 𝜎2),

�𝐸 [𝑥2] = ∑𝑘
𝑖 (

∑
𝑥2 + 𝑒𝑖 )
𝑘𝑛

∼ �𝐸 [𝑋 2] + N (0, 𝜎2/𝑘𝑛2)

Therefore, with probability at least 1 − 𝑝/4, |�𝐸 [𝑋 2] − �𝐸 [𝑋 2] | ≤

𝜎
√︁
2 ln(8/𝑝)/

√
𝑘𝑛 = 𝑂

(
𝐵2

√
ln(1/𝛿 ) ln(1/𝑝 )

𝜖
√
𝑘𝑛

)
(same for all other 3

moments 𝐸 [𝑋 ], 𝐸 [𝑌 ], 𝐸 [𝑋𝑌 ]), by minor changes in D.1, yielding

new bounds on 𝜏1 and 𝜏2 as

𝜏1 = 𝐵1/𝜎2𝑥 = 𝑂

(
𝐵2

√︁
ln(1/𝛿) ln(1/𝑝)

𝜖
√
𝑘𝑛𝜎2

x

+ 𝐵
4
ln(1/𝛿) ln(1/𝑝)

𝜖2𝑘𝑛2𝜎2
x

)
= 𝑂

(
𝐵4 ln(1/𝛿) ln(1/𝑝)

𝜖2
√
𝑘𝑛𝜎2

x

)
= 𝜏2

For join, consider 𝑅 [𝑥,𝑦, 𝐽 ] = 𝑅1 [𝑥, 𝐽 ] Z 𝑅2 [𝑦, 𝐽 ] and 𝑑 =

|𝑑𝑜𝑚(𝐽 ) | where 𝑑 → 𝑛. In contrast to union, there is additional

noise added to the zero-th moment of each join key. i.e. the count

of tuples within each join key. To avoid the scenario where this

number is non-positive, an additional assumption is required [59]

that the noise is bounded by 𝑜 (𝑛/𝑑). Note that in the unbiased

estimation, the privatized 𝑠 [𝑐] is computed as

𝑠 [𝑐] =
∑︁
𝑖∈ 𝐽

(𝑛/𝑑 + 𝑜 (𝑛/𝑑)) (𝑛/𝑑 + 𝑜 (𝑛/𝑑))

=
∑︁
𝑖∈ 𝐽

(𝑛/𝑑 + 𝑜 (𝑛/𝑑))2

= 𝑑 (𝑛/𝑑 + 𝑜 (𝑛/𝑑))2

Then, for 𝑒𝑖,1, 𝑒𝑖,2, 𝑒𝑖,3 ∼ N(0, 𝜎2) defined as the Gaussian noise

added to

∑
𝑡 ∈𝑅1 .𝑖 𝑥

2,
∑
𝑡 ∈𝑅1 .𝑖 𝑥,

∑
𝑡 ∈𝑅2 .𝑖 𝑦 for each join key 𝑖 ∈ 𝐽 ,

with probability at least 1−𝑝/4,∑𝑖∈ 𝐽 𝑒𝑖, 𝑗 ∼ N(0, 𝑑𝜎2) and∑
𝑖∈ 𝐽 𝑒𝑖, 𝑗 ≤

𝜎
√︁
2𝑑 ln(8/𝑝) = 𝑂

(
𝐵2

√
𝑑 ln(1/𝛿 ) ln(1/𝑝 )

𝜖

)
for 𝑗 = {1, 2, 3}

�𝐸 [𝑋 2] =
∑
𝑖∈ 𝐽 (

∑
𝑡 ∈𝑅1 .𝑖 𝑥

2)𝑛/𝑑
𝑛2/𝑑

=

∑
𝑥2

𝑛�𝐸 [𝑋 2] =
∑
𝑖∈ 𝐽

(
(∑𝑡 ∈𝑅1 .𝑖 𝑥

2) + 𝑒𝑖,1
)
(𝑛/𝑑 + 𝑜 (𝑛/𝑑))∑

𝑗∈ 𝐽 (𝑛/𝑑 + 𝑜 (𝑛/𝑑)) (𝑛/𝑑 + 𝑜 (𝑛/𝑑))

By expanding
�𝐸 [𝑋 2], we have�𝐸 [𝑋 2] =

(𝑛/𝑑)∑𝑥2 + (𝑛/𝑑) · ∑𝑖∈ 𝐽 𝑒𝑖,1 + 𝑜 (𝑛/𝑑)
∑
𝑥2 + 𝑜 (𝑛/𝑑)∑𝑖∈ 𝐽 𝑒𝑖,1

𝑛2/𝑑 + 2𝑛 · 𝑜 (𝑛/𝑑) + 𝑑 · 𝑜 (𝑛2/𝑑2)

=
(
∑
𝑥2

𝑛 + (∑𝑖∈ 𝐽 𝑒𝑖,1)/𝑛) (1 + 𝑜 (𝑛/𝑑) (𝑑/𝑛))
1 + 2(𝑑/𝑛) · 𝑜 (𝑛/𝑑) + (𝑑2/𝑛2) · 𝑜 (𝑛2/𝑑2)

=

∑
𝑥2

𝑛 + (∑𝑖∈ 𝐽 𝑒𝑖,1)/𝑛 + 𝑜 (1) (
∑
𝑥2

𝑛 + (∑𝑖∈ 𝐽 𝑒𝑖,1)/𝑛)
1 + 𝑜 (1)

= (1 + 𝑜 (1)) ©«
∑
𝑥2

𝑛
+ (

∑︁
𝑖∈ 𝐽

𝑒𝑖,1)/𝑛 + 𝑜 (1) (
∑
𝑥2

𝑛
+ (

∑︁
𝑖∈ 𝐽

𝑒𝑖,1)/𝑛)ª®¬
Hence

|�𝐸 [𝑋 2] − �𝐸 [𝑋 2] | = 𝑂
(∑

𝑖∈ 𝐽 𝑒𝑖,1
𝑛

)
= 𝑂

(
𝐵2

√︁
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖𝑛

)
Similarly, and based on 𝑑 → 𝑛

|�𝐸 [𝑋 ]2 − �𝐸 [𝑋 ]2 | = 𝑂 (
2

(∑
𝑥

𝑛

) (∑
𝑖∈ 𝐽 𝑒𝑖,1
𝑛

)
+

(∑
𝑖∈ 𝐽 𝑒𝑖,1
𝑛

)
2

)
= 𝑂

(
𝐵3

√︁
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖𝑛
+ 𝐵

4𝑑 ln(1/𝛿) ln(1/𝑝)
𝜖2𝑛2

)
= 𝑂

(
𝐵4

√
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛

)
By triangle inequality, we have

|𝜎2
x
− 𝜎2

x
| ≤ |�𝐸 [𝑋 2] − �𝐸 [𝑋 2] | + |�𝐸 [𝑋 ]2 − �𝐸 [𝑋 ]2 |
= 𝑂

(
𝐵4

√
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛

)
and

𝜏1 = 𝑂

(
𝐵4

√
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛𝜎2
x

)
For

�𝐸 [𝑋𝑌 ] where 𝑋 ∈ 𝑅1 and 𝑌 ∈ 𝑅2, the privatized 𝑛 in the

unbiased estimation is computed as

𝑑

√︄
𝑠 [𝑐]
𝑑

= 𝑛 + 𝑜 (𝑛) = 𝑂 (𝑛)
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Thus, the privatized and non-privatized estimation of 𝐸 [𝑋𝑌 ] can
be computed as�𝐸 [𝑋𝑌 ] = 1 − 𝑛

1 − 𝑑

∑
𝑖∈ 𝐽

(∑
𝑡 ∈𝑅1 .𝑖 𝑥

) (∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
𝑛2/𝑑

+ 𝑛 − 𝑑
1 − 𝑑 ·

∑
𝑖∈ 𝐽

(∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
𝑛2/𝑑

·
∑
𝑖∈ 𝐽

(∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
𝑛2/𝑑�𝐸 [𝑋𝑌 ] = 1 − (𝑛 + 𝑜 (𝑛))

1 − 𝑑

∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
+ 𝑒𝑖,2

) ( (∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
+ 𝑒𝑖,3

)∑
𝑗∈ 𝐽 (𝑛/𝑑 + 𝑜 (𝑛/𝑑)) (𝑛/𝑑 + 𝑜 (𝑛/𝑑))

+ 𝑛 + 𝑜 (𝑛) − 𝑑
1 − 𝑑

∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
+ 𝑒𝑖,2

) ∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
+ 𝑒𝑖,3

)(∑
𝑗∈ 𝐽 (𝑛/𝑑 + 𝑜 (𝑛/𝑑)) (𝑛/𝑑 + 𝑜 (𝑛/𝑑))

)
2

=
𝑑 (1 − (𝑛 + 𝑜 (𝑛)))

𝑛2 (1 − 𝑑)

∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
+ 𝑒𝑖,2

) ( (∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
+ 𝑒𝑖,3

)
1 + 𝑜 (1)

+ 𝑑
2 (𝑛 + 𝑜 (𝑛) − 𝑑)
𝑛4 (1 − 𝑑)

∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
+ 𝑒𝑖,2

) ∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
+ 𝑒𝑖,3

)
(1 + 𝑜 (1))2

Based on the same flow of logic as |�𝐸 [𝑋 2]−�𝐸 [𝑋 2] |, we would like
to bound

∑
𝑖∈ 𝐽

( (∑
𝑡 ∈𝑅1 .𝑖 𝑥

)
𝑒𝑖,3 +

(∑
𝑡 ∈𝑅2 .𝑖 𝑦

)
𝑒𝑖,2 + 𝑒𝑖,2𝑒𝑖,3

)
. Note that∑︁

𝑖∈ 𝐽

©«
∑︁

𝑡 ∈𝑅2 .𝑖

𝑦
ª®¬ 𝑒𝑖,2 ≤ 𝑛𝐵

𝑑

∑︁
𝑖∈ 𝐽

𝑒𝑖,2 = 𝑂

(
𝑛𝐵3

√︁
ln(1/𝛿) ln(1/𝑝)

√
𝑑𝜖

)
∑︁
𝑖∈ 𝐽

𝑒𝑖,2𝑒𝑖,3 ≤ 𝜎
√︁
ln(8/𝑝)

∑︁
𝑖∈ 𝐽

𝑒𝑖,2 = 𝑂

(
𝐵4

√
𝑑 ln(1/𝑝) ln(1/𝛿)

𝜖2

)
Hence the first two terms are bounded by 𝑂

(
𝐵4

ln(1/𝛿 ) ln(1/𝑝 )√
𝑑𝜖2

)
.

For the last term, we may also bound as

©«
∑︁
𝑖∈ 𝐽

∑︁
𝑡 ∈𝑅1 .𝑖

𝑥
ª®¬
∑︁
𝑖∈ 𝐽

𝑒𝑖,3 = 𝑂

(
𝑛𝐵3

√︁
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖

)
∑︁
𝑖∈ 𝐽

𝑒𝑖,3

∑︁
𝑖∈ 𝐽

𝑒𝑖,2 = 𝑂

(
𝐵4𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖2

)
So the last term is𝑂

(
𝑛𝐵3𝑑

√
𝑑 ln(1/𝛿 ) ln(1/𝑝 )

𝜖𝑛3
+ 𝐵4𝑑2

ln(1/𝛿 ) ln(1/𝑝 )
𝜖2𝑛3

)
,

which can be combined as 𝑂

(
𝐵4𝑑2

ln(1/𝛿 ) ln(1/𝑝 )
𝜖2𝑛3

)
. Therefore

|�𝐸 [𝑋𝑌 ] − �𝐸 [𝑋𝑌 ] | = 𝑂 (
𝐵4 ln(1/𝛿) ln(1/𝑝)

√
𝑑𝜖2

)
Based on the similar analysis as |�𝐸 [𝑋 ]2−�𝐸 [𝑋 ]2 |, we have |�𝐸 [𝑋 ]�𝐸 [𝑌 ]−�𝐸 [𝑋 ]�𝐸 [𝑌 ] | = 𝑂 (

𝐵4

√
𝑑 ln(1/𝛿 ) ln(1/𝑝 )

𝜖2𝑛

)
. This yields

|𝜎2
xy

− 𝜎2
xy
| = 𝑂

(
𝐵4 ln(1/𝛿) ln(1/𝑝)

√
𝑑𝜖2

)
With an extra assumption that 𝑋 and 𝑌 are 0-centered and each

tuple within 𝑅1 and 𝑅2 is independent and the join key is uncorre-

lated with 𝑋 and 𝑌 . By the Chernoff-Hoeffding’s inequality, with

probability at least 1 − 𝑝/4, we have������ ∑︁
𝑡 ∈𝑅1 .𝑖

𝑥

������ ,
������ ∑︁
𝑡 ∈𝑅1 .𝑖

𝑦

������ ≤ 𝐵
√︁
2 ln(16𝑑/𝑝)𝑛/𝑑 ∀𝑖 ∈ 𝐽

This yields∑︁
𝑖∈ 𝐽

©«
∑︁

𝑡 ∈𝑅2 .𝑖

𝑦
ª®¬ 𝑒𝑖,2 ≤ 𝐵

√︁
2 ln(16𝑑/𝑝)𝑛/𝑑

∑︁
𝑖∈ 𝐽

𝑒𝑖,2

= 𝑂

(
𝐵3

√︁
𝑛 ln(𝑑/𝑝) ln(1/𝛿) ln(1/𝑝)

𝜖

)
Giving a bound that scale with the size of the relation

|�𝐸 [𝑋𝑌 ] − �𝐸 [𝑋𝑌 ] | = 𝑂 (
𝐵4 ln(1/𝑝) ln(1/𝛿)

√︁
𝑑 ln(𝑑/𝑝)

𝜖2
√
𝑛

)
Putting everything together, with probability at least 1 − 𝑝 , we

have

𝜏2 = 𝑂

(
𝐵4 ln(1/𝑝) ln(1/𝛿)

√︁
𝑑 ln(𝑑/𝑝)

𝜖2
√
𝑛𝜎2

x

)
Extension to multi-features. The extension of our analysis to

multi-dimensional features involves two modifications. Firstly, the

bounds 𝐵1 and 𝐵2 are determined by matrix norm bounds through

random matrix theory [57] instead of the absolute value of single

random variable . Secondly, the bound of the inverse of 𝜎2
x
is re-

quired, where 𝜎2
x
was scalar but now is a matrix; the inverse of 𝜎2

x

may become unboundedly large if its minimum eigenvalue is close

to 0. To address this, Wang [59] makes an additional assumption

that the noises to 𝜎2
x
has a minimum eigenvalue _𝑚𝑖𝑛 of 𝑜 ( |𝜎2

x
|).

E ALLOCATION OF NOISES
We analyze the implication of dynamic allocation of privacy budget

for moments on linear regression confidence bound appendix D.

For union, it is possible to impute noise directly to (𝜎2
x
)𝑖 , (𝜎2xy)𝑖 ,

empirical variance, and covariance for each dataset 𝑅𝑖 . Each of

(𝜎2
x
)𝑖 , (𝜎2xy)𝑖 has sensitivityΔ′ = 𝑂 (𝐵2/𝑛). Thus, let𝜎′ =

√︁
2 ln(1.25/𝛿)Δ′/𝜖

and

𝜎2
x
∼

∑𝑘
𝑖

(
(𝜎2

x
)𝑖 + N(0, 𝜎′2)

)
𝑘

Applying gaussian tail bound and the independency assumption

yields |𝜎2
x
−𝜎2

x
| = 𝑂 (𝐵2

√︁
ln(1/𝛿) ln(1/𝑝)/𝜖

√
𝑘𝑛), and |𝜎2

xy
−𝜎2

xy
| =

𝑂 (𝐵2
√︁
ln(1/𝛿) ln(1/𝑝)/𝜖

√
𝑘𝑛). This reduces the bound on 𝜏1 and

𝜏2 by a factor of 𝑂 (𝐵2
√︁
ln(1/𝛿) ln(1/𝑝)/𝜖). Based on appendix A,

consider the query 𝑞 𝑗,𝑖 : D𝑛 −→ S𝑖
where S𝑖 = {𝑣 | 𝑣 ∈ R𝑖 }.

𝑞 𝑗,𝑖 returns a vector 𝑠𝑖 ∈ S𝑖
containing the sum of the 𝑖-order

monomials across each join key.

Δ𝑞 𝑗,𝑖
=

√︁
12Z+1 (𝑖)4𝐵2𝑖 + 12Z (𝑖)2𝐵2𝑖

For linear regression, it is feasible to decomposite 𝑞 𝑗 into 3

sequential queries, 𝑞 𝑗,0, 𝑞 𝑗,1 and 𝑞 𝑗,2, each with privacy budget

(𝜖/3, 𝛿/3). Inheriting notations from appendixD,Δ = Δ𝑞 𝑗
,𝑂 (𝐵2Δ𝑞 𝑗,0

) =
𝑂 (𝐵Δ𝑞 𝑗,1

) = 𝑂 (Δ𝑞 𝑗,2
) = 𝑂 (𝐵2), note that although there is less

privacy budget on releasing the count of tuples within each join

key, the sensitivity is also reduced by a magnitude of 𝐵2, i.e. from

Δ to Δ𝑞 𝑗0
. Hence, it is reasonable to assume that the noise on

this number is small, and bounded by 𝑜 (𝑛/𝑑). The main impli-

cation is that 𝑒𝑖,2, 𝑒𝑖,3 = N(0, 2 ln(1.25/(𝛿/3))Δ2

𝑞 𝑗,1
/(𝜖/3)2), and

𝑒𝑖,1 = N(0, 2 ln(1.25/(𝛿/3))Δ2

𝑞 𝑗,2
/(𝜖/3)2), and no more change to
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the analysis is required. Following the computations in appendix D,

we have

𝜏1 = 𝑂 (𝐵
2

√
𝑑 ln(1/𝛿) ln(1/𝑝)

𝜖2𝑛𝜎2
x

), 𝜏2 = 𝑂 (𝐵
2
ln(1/𝛿) ln(1/𝑝)

√
𝑑𝜎2𝑥

)
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