
Towards Large-Scale Data Discovery [Position Paper]

Raul Castro Fernandez, Ziawasch Abedjan, Samuel Madden, Michael Stonebraker

MIT, CSAIL
raulcf@csail.mit.edu, abedjan@mit.edu, madden@csail.mit.edu, stonebraker@csail.mit.edu

ABSTRACT
With thousands of data sources spread across multiple databases
and data lakes, modern organizations face a data discovery chal-
lenge. Analysts spend more time finding relevant data to answer the
questions at hand than analyzing it.

In this paper we introduce a data discovery system that facilitates
locating relevant data among thousands of data sources. We rep-
resent data sources succinctly through signatures, and then create
search paths that permit quick execution of a set of data discovery
primitives used for finding relevant data. We have built a prototype
that is being used to solve data discovery challenges of two big
organizations.

1. INTRODUCTION
Modern organizations organize their data into thousands of het-

erogeneous databases and data lakes that are managed by different
teams and departments. In such an environment, a data analyst is
faced with the problem of finding which datasets contain the data
needed to answer their questions. As data processing systems be-
come ever faster, analysts will spend more and more of their time
finding relevant data to answer the question at hand than the spend
actually analyzing it!

Finding relevant data is difficult because no single person in
an organization knows about all the data sources [8]. Suppose an
analyst wants to answer the question: what is the monthly sales trend
by department? The analyst knows conceptually what data is needed
to answer this question (a table of sales, a table of departments, a
table of products sold by each department), but not which specific
data sources (relations in a schema or files in an HDFS deployment)
contain such data. The typical solution is to 1) ask an expert (if such
a person is available), or to perform manual exploration, inspecting
datasets one by one (which is time-consuming and prone to missing
relevant data sources). We say this analyst is facing a data discovery
challenge.

Data discovery challenges are widespread in the enterprise and
are typically solved with one of the two following top-down ap-
proaches: (i) designing a global schema that represents all the data;
or (ii) creating metadata to describe the data to enable analysts to
search for the data they need. An example of the first case is a data
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ExploreDB’16, June 26-July 01 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4312-1/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2948674.2948675

warehouse: database administrators carefully design a schema that
integrates different sources fed into the warehouse and makes them
usable to other users. An example of the second case is a search
service that allows users to specify different search criteria based on
characteristics of the original data. For example, a website might
provide a search bar to search over the names and departments of
the people in an organization.

The problem with these top-down approaches is that neither of
them scales to a large number of sources. Designing a global schema
of data sources is hard; in fact, most data warehouses integrate
only a handful of sources [5]. Assuming complete knowledge of
user’s discovery needs and designing search filters data prevents
ad-hoc queries and is not robust to changes in the discovery needs.
Therefore, top-down solutions are brittle to changes in the discovery
queries and impossible to use for ad-hoc discovery needs.

In this paper we describe a data discovery system built bottom-up.
Our system consists of three key components:
1. We first accumulate knowledge of the data sources by sum-

marizing them with signatures: domain-dependent, compact
representations of the original data.

2. We create search paths over the signatures that reflect different
relatedness measurements and allows one to navigate the sources,
such as similarity measures between data sources.

3. Finally we expose the built knowledge through a set of data
discovery primitives that can be used interactively to explore
and find relevant data.

We propose a set of discovery primitives that can solve data
discovery problems at scale. To enable large-scale and low-latency
execution of these primitives we present a system that integrates
a signature extraction module to create signatures from original
data and a search path creation module that allows the discovery
primitives to execute efficiently. We handle domain specific data
by integrating new signatures that capture domain knowledge. For
cases in which the search needs are domain-specific, users can define
new primitives and functions based on the provided search paths.

To realize this vision we face a number of technical challenges:
◦ Data discovery interface. What is the minimum number of

primitives that will cover most discovery needs? A small number
is desirable as each primitive requires a different search path,
which is expensive to build.

◦ Data signatures. To cope with the large volumes of data, we need
to summarize it. We propose to create signatures that capture
the underlying data in a compact way. The challenge is to build
signatures that are small and sufficiently expressive even in the
presence of dirty data, because in the general case it is unrealistic
to clean all data beforehand.

◦ Large scale Many of the search paths we envision are represented
as graphs with nodes as signatures and edges that represent the

http://dx.doi.org/10.1145/2948674.2948675

different relationships among signatures, such as similarity, over-
lap, etc. In general, building such graphs requires a pairwise
comparison that grows as the square of the attributes and data
sources available. The challenge is to find alternative ways to
build search paths in a scalable manner.
We recognize that the challenges above are hard to solve in the

general case. For example, domain-specific discovery scenarios
such as gene databases or large-scale simulations demand tailor-
made solutions to capture user needs. We do not aim to provide
a general solution for every data discovery problem, but instead a
framework for data discovery that can be adapted quickly to specific
domains, much as a relational database offers schema management
and processing capabilities without constraining the applications that
can use it or the specific implementation of the relational operators
or search paths.

We have built a prototype system that is being used to solve data
discovery problems from different clients (we can demonstrate this
prototype at the workshop). We have a collaboration with the MIT
data warehouse team that supports around 1TB data divided among
approximately 2000 tables, and with a big pharma company with
more than 4000 relational databases.

The rest of the paper provides an overview of an initial set of data
discovery uses cases that we have identified by talking to customers
and retrieved from the literature (section 2). Then we explain our
approach to building bottom-up search paths to assist in discovery
tasks in section 3. Finally we contextualize our ideas with respect
to the related work in section 4.

2. DATA DISCOVERY INTERFACE
We have demonstrated our prototype data discovery system to

many organizations, and have an active collaboration with the the
MIT data warehouse (MIT DWH) team and a big pharma company
to evaluate the prototype in their environment. Next, we describe the
two discovery use cases and the interface we envision for discovery.

2.1 Discovery Use Cases
Discovery problems aim to narrow down the search for relevant

data from many data sources to a handful of them. These two use
cases are examples of such goal:

View Search. The MIT DWH contains data from the entire
organization organized into around 2,000 different source tables
and a few hundred views. Customers of the DWH pose questions
such: "I’d like to know all faculty or staff pay scales at MIT grouped
by department and research area". Currently, the managers of the
DWH follow a manual process to find tables relevant to answer the
question, and offer them to the customer.

Schema Complement. A big pharma company has found a view
with a set of attributes that are relevant to a business question they
have. They want to find additional attributes that would complement
the already existent data in the view. The problem they face is to find
those attributes across the 4,000 relational databases they manage.

2.2 Seeds and Primitives
Users interact with the discovery system through seeds that are

input information of interest to them, invoking primitives that use
seeds to find other information they do not know.
Seeds. We have identified several different seeds users may use to
trigger the discovery process:
◦ Value seed. Users kick off the process with a known value, such

as a keyword. This is useful to get a general overview of the data.
◦ Attribute seed. Users know an attribute of interest and they

want to find attributes that overlap or that are similar, e.g., find

A B C D E F

S(A)

S(B) S(C) S(D)

S(A)

S(B) S(C)

S(D)

Signature	Extraction

Search	Path	Creation

S(A)
S(B)

S(C)
S(D)

S(E)

S(F)

Figure 1: Bottom-up approach to data discovery

attributes similar to faculty names.
◦ Schema seed. Users want to perform a search over the schema

available. This is useful when names are unambiguous or have
been annotated with descriptive labels.

◦ Table seed. When users have determined a table of interest, they
may use it as a seed to find other related tables—with overlapping
schemas or similar attributes—that can be used to augment the
information available in the original one.

Primitives. We have also identified an initial set of primitives useful
to solve the use cases we have presented before. These primitives
can be used with the previous seeds to find additional useful data.
◦ Schema-driven primitives. These primitives can be used to

search the available schemas or to enrich them with additional
labels extracted from external systems, e.g., knowledge bases.

◦ Data-driven primitives. These primitives can be used to dis-
cover relationships amongst data, e.g., whether two attributes are
similar or overlap.

◦ Enrichment primitives. These primitives permit the user to
perform entity and schema complement operations, i.e., adding
additional records or attributes to a schema.
The idea behind the primitives is to offer basic functionality

that can be composed into discovery functions that perform more
complex operations. For example, a function that computes the
join path between two tables, or a function to find all attributes of a
given type in the dataset. In addition, we support logical operators
to combine results from different primitives and operators, allowing
more specialized discovery queries.

3. ARCHITECTURE
A data discovery system must answer queries in human-scale

latencies to permit interactive exploration. For this, each primitive
uses a search path that is built over signatures. The general system
architecture shown in Fig. 1 shows a signature extraction and search
path creation module that together can be used to achieve the low-
latency goal. Next we explain both modules using as an example of
one of the discovery primitives we have used to solve the use cases
of section 2.1.

3.1 Finding relevant data
To solve the use cases presented above we have implemented a

primitive called find similar attributes that takes an attribute seed
as input and returns other attributes in the entire dataset that are
similar. This is a data-driven primitive, as it needs to inspect the
data values. This primitive is useful when the schema name for two
similar attributes is different, such as "Year" and "Fiscal Period"—
useful for view search—and to find similarity join candidates which
is useful for schema complement.

For this primitive to work we need a similarity score across all
attributes in the entire dataset. Unfortunately, inspecting every

individual value of each attribute is at odds with our low-latency
goal. Instead, we use signatures to summarize the values of each
attribute first, and search paths to speed up the querying process:
Signature extraction. The signature extraction module of Fig. 1 is
responsible for computing signatures for each attribute in the dataset.
A signature for finding similar attributes must: (i) represent the
attribute values in a compact way; and (ii) be compatible with
a similarity metric. Currently we have primitives for numerical
and textual values. For numerical values the module learns the
probability distribution of the data. We use non-parametric methods
for this, as it is in general impossible to tune the learning process for
every attribute in the dataset due to the scale. We use kernel density
estimators and we are also exploring one-dimensional support vector
machines, which are robust to noise: a desirable property when
learning a signature over dirty data. For textual values we first
represent each attribute as a bag of words and then compute its
TF-IDF vector.

Numerical signatures can then be compared in one of two different
ways. One is with statistical distances such as Kolmogorov-Smirnov,
that determine the distance between two different sample distribu-
tions. An additional method we are currently testing consists of
transforming probability distributions into vectors of sample values
that can be represented in an Euclidean space, where other non-
statistical distance metrics are defined. For textual values we use
cosine similarity that yields good results due to the sparsity of the
TF-IDF vectors.
Search path creation. Despite the existence of signatures, we
would still need to compute the similarity between the seed attribute
and all the others. To avoid this, we rely on search paths that
facilitate such similarity search. The search path for the primitive
we consider is represented as a graph where nodes are signatures
and there exists an edge between every pair of signatures weighted
with the similarity score of the attributes.

Although this search path creates a logically complete graph,
in practice it is possible to define a minimum similarity threshold
to prune edges. Executing the primitive means finding the node
that represents the seed attribute in the graph (we use an indexed
representation of the graph for this) and returning its neighbors, that
can be ranked by their weight score. We can additionally pass a
parameter that defines a new threshold to further reduce the returned
results on runtime.

We have found that search paths based on graphs support many
of the primitives we have implemented so far. In particular, those
primitives that require finding some relatedness among attributes.

3.2 Additional Challenges
Support for domain-specific data. Certain data can be represented
with domain-specific signatures. Gene sequences may be better
represented with their descriptors than with the original sequences.
Highly structured text can be represented with regular expressions.
The challenge is to incorporate an appropriate feature engineering
engine. Our current approach is to specify a signature per primitive
and data type, along with a signature extractor that is included into
the signature extractor module.
Taming the scale. Building the graph search path requires a pair-
wise operation among all attributes in the entire dataset, a N2 opera-
tion. To scale this process, we are introducing approximate nearest
neighbor techniques based on locality sensitive hashing [4] that
helps to scale the process. In addition, we have built a distributed
prototype that can ingest data and compute signatures and search
paths in parallel.
Continuous operation. As new data sources appear, we want to add

them incrementally to the search paths, so that the discovery system
can include them in the answers to discovery primitives. A related
challenge is to detect when the values of a given attribute have
changed enough to justify recomputing the signature, or alternatively
maintaining the signatures incrementally.

4. RELATED WORK
Data discovery as IR. Data discovery over large scale repositories
is related to the central problem of information retrieval: how to
find a ranked list of objects relevant to a search query. Previous
work has recognized this analogy. In [6], the authors describe a
retrieval-style ranked search system for oceanographic data. The
system relies on metadata specific to the domain, such as initial and
end observation time of the data, and proposes a similarity metric
to compare user-input criteria with this metadata. An analogous
method is used for genomic data search in [7]. These approaches
aim to find relevant data within a corpus of domain-specific datasets.
Unlike them our vision is a data discovery system that helps analysts
to find relevant data among large number of heterogeneous datasets.
By following a bottom-up approach we incorporate knowledge from
the original data sources through our signature extraction module
and use it to broaden the search possibilities.
Finding relevant data. The task of finding relevant data is present
in multiple scenarios. In the context of webtables [2], researchers
have proposed ways of locating tables related to the ones provided
by users (table seed as described in this paper) [3]. Other research
has focused on searching with numbers [1], which resembles our
find similar attributes primitive with a numerical attribute seed
Unlike these approaches, our focus is on providing a platform that
integrates different seeds and primitives that users need to solve
a broad set of discovery use cases. This means that our platform
strives for generality, although many of the techniques presented in
previous work can be incorporated into our platform.

5. CONCLUSIONS
We have described a bottom-up approach to data discovery, a

challenge found in every middle and large size organization. By
defining signatures on the source data and creating search paths that
structure the signatures, users can execute efficiently a set of data
discovery primitives that permit them to find relevant data.

As part of our ongoing effort we are: (i) incorporating signatures
for domain-specific data; (ii) additional primitives to generate meta-
data automatically from data; (iii) primitives to capture structural
similarity of different attributes across the dataset; and (iv) adding
support for unstructured data, among others.

6. REFERENCES[1] R. Agrawal and R. Srikant. Searching with Numbers. In WWW,
2002.

[2] M. J. Cafarella, A. Halevy, et al. WebTables: Exploring the
Power of Tables on the Web. VLDB, 2008.

[3] A. Das Sarma, L. Fang, et al. Finding Related Tables. In
SIGMOD, 2012.

[4] M. Datar, N. Immorlica, et al. Locality-sensitive Hashing
Scheme Based on P-stable Distributions. In SCG, 2004.

[5] A. Halevy, A. Rajaraman, et al. Data Integration: The Teenage
Years. In VLDB, 2006.

[6] V. M. Megler and D. Maier. Are Data Sets Like Documents?:
Evaluating Similarity-Based Ranked Search over Scientific
Data. In TKDE, 2015.

[7] V. M. Megler, D. Maier, et al. Data like this: Ranked search of
genomic data vision paper. In ExploreDB, 2015.

[8] I. Terrizano, P. Schwarz, et al. Data Wrangling: The
Challenging Journey from the Wild to the Lake. In CIDR, 2015.

	Introduction
	Data Discovery Interface
	Discovery Use Cases
	Seeds and Primitives

	Architecture
	Finding relevant data
	Additional Challenges

	Related Work
	Conclusions
	References

