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Most deployed data discovery systems, such as Google Datasets, and open data portals only support keyword
search. Keyword search is geared towards general audiences but limits the types of queries the systems can
answer. We propose a new system that lets users write natural language questions directly. A major barrier to
using this learned data discovery system is it needs expensive-to-collect training data, thus limiting its utility.

In this paper, we introduce a self-supervised approach to assemble training datasets and train learned
discovery systems without human intervention. It requires addressing several challenges, including the
design of self-supervised strategies for data discovery, table representation strategies to feed to the models,
and relevance models that work well with the synthetically generated questions. We combine all the above
contributions into a system, SoLo, that solves the problem end to end. The evaluation results demonstrate the
new techniques outperform state-of-the-art approaches on well-known benchmarks. All in all, the technique
is a stepping stone towards building learned discovery systems.
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1 INTRODUCTION

The widespread use of tabular formats to represent information, both within organizations, and
across the Internet, means that there is more structured data available than ever before. This is a
boon to both decision makers and citizen journalists, who can identify alternative data sources
to support their data-driven tasks. Identifying relevant datasets among these large repositories is

challenging due to the large volume of data and the consequent “needle-in-the-haystack” problem.

In response, several data discovery solutions [9, 10, 18, 24, 74] were proposed over the last few
years. These solutions offer interfaces geared to technical users, such as programmatic APIs, or
keyword search based solutions that are targeted to a more general audience but that limits the
types of queries the system can answer.

Example 1/3. For example, we went to the City of Chicago Open Data Portal[15] to answer the
question “What are the business hours of Employment Resource Center at Howard?”, a question that
someone seeking a job in Chicago may be interested in knowing, as employment resource centers help
users find jobs. Using the keyword search interface provided by the portal, we input different variations
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of our query such as “Employment Resource Center”, and “open hours, employment resource center”
and more. They yielded different rankings of tables. But none of them satisfied our information need.

A promising alternative search interface is to let users express their discovery needs with natural
language questions. First, a question lets users express more precisely the information they need.
Second, even non-technical users can ask natural questions, thus making discovery available to a
larger audience. The huge progress in natural language processing techniques of the last few years
means there are today a few learned table discovery approaches that concentrate in solving exactly
this problem: finding a table given a question written in English.

Example 2/3. Using Soro, we use its Ul to ask “What are the business hours of Employment Resource
Center at Howard?” and the system returns a list of tables. The top table named “Public Technology
Resources” contains the information we needed, with attributes “Facility” and “Hours” which do not
exactly match the words in the question but clearly answer our information need.

Despite their ability to answer natural language questions, a major barrier to using learned data
discovery systems is they must be trained for each repository before users can search, and collecting
training datasets (of question-answer pairs) is difficult, and time-consuming. And because such
training dataset must be collected for each new repository where the learned discovery system is
to be deployed, and it must be refreshed periodically to account for data changes, this results in a
lack of adoption.

In this paper, we introduce a self-supervised learned table discovery approach that we
implement as part of a new discovery system called SorLo. Soro implements a new strategy to
automatically assemble high-quality training datasets from repositories of tables without human
involvement in neither the collection or labeling of the data, thus tackling the main roadblock to
deploying learned table discovery systems. The new strategy relies on self-supervision to construct
the training dataset, but we had to carefully design the strategy so it works in practice. In this
paper, we concentrate on table discovery scenarios where the answer to a question g is a table T;*
that contains the answer to g, e.g., the table “Public Technology Resources” in the example contains
the answer to our question. To build Soro we tackled many challenges:

e Synthesis of Training Data. Synthesizing a training dataset off a repository of tables requires
solving two interrelated problems. First, we need an approach to generate questions from tables to
produce positive pairs, (g, T;"), where the table T;" contains the answer to the question g. Second,
the approach must determine an appropriate training dataset size. Too small, and the system will
not generalize. And too large will unnecessarily consume resources (time and money). Furthermore,
choosing a naive heuristic will fail, as different repositories need different amounts of data. The
challenge is to choose the training data size in a principled way.

e Table Representation for Self-supervision. The learned discovery systems ingests tables
in vector format. This calls for a table representation strategy. There are many strategies in the
literature to represent tables as vectors, but we found that many negatively impact performance
[13, 26, 62, 65, 73]. These strategies either just treat a table as ordinary text and thus ignore the
table structure or require human-annotation to ensure training data as the same distribution as test
data. So the challenge is to identify table representation that leads to high performance.

¢ Assemble end-to-end system. Unlike most work in this area, that concentrates on providing
algorithms, we provide algorithms and implement them in an end-to-end system. Doing so uncovers
several important challenges that if left unaddressed would make the system impractical. We
follow a divide-and-conquer approach and split the design and implementation of the system into
two broad components, each of which benefits from different machine learning models. During
first-stage retrieval, the system must identify a subset of potentially relevant tables. During second-
stage ranking it must identify the table that contains the answer to the input question among
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those returned by first-stage retrieval. When we assembled these two components, we noticed
several important performance challenges, such as large storage footprint (due to the distributed
representation of many tables), slow encoding time, and low throughput. We implemented a series
of techniques to mitigate these problems, achieving several times smaller footprint and encoding
time, and subsecond query latency.

We introduce novel techniques to address the above challenges as part of Soro, which we will
release as open-source. The main contribution of the paper is a self-supervised method that
leverages SQL as an intermediate proxy between questions and text, facilitating the synthesis of
training data. The approach uses Bayesian neural networks to automatically determine the training
data size in a principled manner. Second, to represent tables in vector format and feed them to the
system, we introduce a simple-to-implement graph-based table representation, called row-wise
complete graph, that is insensitive to the order of columns or rows, which do not bear any meaning
in the relational model. Third, we introduce a new relevance model that exploits a pretrained
question answering (QA) model [31] and works in tandem with the self-supervised training data
collection technique to yield high retrieval performance. Although Sovro uses pretrained models,
users of SorLo do not need to invest any effort in collecting training data because of SoLo’s self-
supervised training data synthesis. Together, these contributions lead to the first self-supervised
learned table discovery system that automatically assembles training datasets from repositories and
lets humans pose their information needs as natural language questions.

Integrating SoLo in Existing Pipelines. Existing NL-to-SQL interfaces concentrate in answering
queries by processing table cells, i.e., query answering [23, 29, 56, 77]. In contrast, SOLO concentrates
on finding a table that is relevant to the user’s information needs. Those information needs may be
query answering, in which case users can apply existing NL-to-SQL interfaces downstream of Soro
(see Fig. 1 for an illustrative integration of SorLo and an NL-to-SQL system). But crucially, those
information needs may not be query answering, but training a regression model, or others. Thus,
NL-to-SQL systems and SorLo are complementary approaches, the first concentrating on query
answering and the second on data discovery, which is an upstream task.

We evaluate the ability of Soro to identify relevant tables using existing state-of-the-art bench-
marks and comparing the results with state of the art approaches—OpenDTR [26] and GTR [65].
We show that Soro outperforms other approaches on previously unseen data repositories, and
that it matches and sometimes outperforms them even when expensive-to-collect training data
is provided to the other baselines, demonstrating the quality of the synthesized training dataset.
We also evaluate the impact of the new row-wise complete graph table representation, the new
relevance model, and the use of Bayesian networks for efficient training data generation, which
may be of independent interest. Finally, we analyze system-oriented aspects of Soro, including its
runtime performance and reliance on different types of retrieval indexes to give a full account of
the system characteristics and the effectiveness of the optimizations we implement, which reduces
storage footprint by 4x and encoding time by 10x, while yielding sub-second inference times,
offering interactive search to users.

Section 2 presents preliminaries. Section 3 presents the new self-supervised strategy, the table
representation and relevance model are presented in Section 4, and Soro in Section 5. Then, the
evaluation is in Section 6, followed by conclusions in Section 7.

2 PRELIMINARIES

In this section, we present the the scope of data discovery (Section 2.1) , and then the problem
statement (Section 2.2), followed by the related work (Section 2.3) and their shortcomings, and
finishing with the challenges our work tackles in Section 2.4.

Proc. ACM Manag. Data, Vol. 1, No. N4 (SIGMOD), Article 262. Publication date: December 2023.



262:iv Qiming Wang and Raul Castro Fernandez

Training Model

Regression/classification

Output Case B : Machine Learning Model

Output Case A : Top relevant tables

5.1
1 S 4 -
—)‘ SOIO ‘ e - o S.X
NL Query o~ Top relevant tasks
User tables

3

: NL-to-SQL
2 . 7 SQL Query
N b | Translation

A

Database
NL Query
Output Case C : Answer to NL Query 6

Fig. 1. Solo and downstream tasks

2.1 The Scope of Data Discovery

Our goal is to design a system that takes input natural language (NL) questions and returns tables
satisfying users’ information needs. NL questions can be exceedingly complicated. Here, we target
factual questions [20, 30], which are sufficiently expressive to let users discover interesting tables
over large repositories. When questions may benefit from several tables, these tables will tend to
be higher up in the ranking. Our system’s scope is identifying tables relevant to users’ information
needs without assuming how those tables will be used. For that reason, we do not explore the
application of techniques like question decomposition [49, 55, 72] which can be applied to complex
questions at inference time to obtain simpler ones that can then be fed to our system. Soro, the
system we introduce, is a discovery system that sits upstream to the applications users run to solve
their tasks. We illustrate this in Fig. 1, where a NL-to-SQL system is used downstream of Sovro:
Soro finds a relevant table given a question, and then the NL-to-SQL system finds the answer to
the question within that table.

2.2 Problem Statement

A table (relation), T;, has a schema R with k columns Cy, Gy, ..., Cx and rows, r € T;. The table may
have a title (caption) and column names may be missing. A table collection is defined as a set of
tables, T = {T}, 5, ...Ty }. A cell is indexed by a row r and a column ¢, and the function cell;(r, c)
returns the content of the cell in row r and column c of table T;.

Given a question g, the problem we solve is to find a table T, among a large table collection T,
such that T;" contains a cell cell;(r, c) that answers q. This means we do not target more complex
question answering scenarios that require combining information from multiple tables.

Example 3/3. The City of Chicago Open Data Portal has about 630 tables. Today, users input keywords
and obtain a ranking of relevant tables. Users can then inspect the table schema and values to determine
if the table is indeed helpful to their needs. Our problem statement takes a natural language question
as input instead of keywords, and returns a ranking of relevant tables, just as today’s search portals
such as Socrata [37] and Open CKAN[52].

2.3 Related work

Table Question Answering. Question answering over tables (Table QA) models like TAPAS [27],
Tabert [70] and Tapex [47] take 1 question and 1 table as input and return the cell that answers
the question. Our system is complementary as it takes a collection of tables and returns the table
necessary to answer the question. Both approaches can be combined if one wishes to directly obtain
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the answer for the question, although in practice analysts want to understand the table from where
the answer is obtained to build trust on the result.

Table Search. The ad-hoc table search task in information retrieval [13, 62, 73] also tries to solve
data discovery problems but focus on key-word search which often have many relevant tables
while our task needs to identify the table that can answer an input question and so needs more
accurate relevance modeling.

Learned Data Discovery Systems. More recently, GTR [65] uses graph representation learning to
model the relevance between a question and a table, retrieving the table with the highest relevant
to a question. However, this model does not scale to a large collection of tables because computing
the relevance is expensive and must be done for each table. Our contribution, Sovro, first retrieves
a small collection of relevant tables, and then applies a relevant model on this subset. A relevant
approach is OpenDTR [26] which learns a dense question and table encoder for large scale table
search. However, OpenDTR requires expensive human-annotated data to perform well, so do the
non-scalable relevance models.

Natural Language to SQL (NL-to-SQL). NL-to-SQL approaches aim to provide a NL interface
to databases [23, 29, 56, 77] for query answering. To this end, they translate a NL query to a SQL
statement which is executed by a SQL engine to get the answer to the query. One of the challenging
subtasks of a NL-to-SQL system is schema matching, necessary to map NL to valid table and column
names [40]. In existing NL-to-SQL benchmarks, datasets often contain a small number of tables
and also each query often includes the table names which makes finding the right tables trivial,
e.g. there are only 5 tables on average per each database in the impactful Spider [71] dataset. In
contrast, data discovery systems such as Soro aim to find a relevant table among tens of thousands
of tables. In summary, NL-to-SQL approaches concentrate in solving query answering, while SoLo
concentrates in addressing data discovery.

Large Language Models (LLM). LLMs such as GPT-4 [51] answer input questions from a static
collection of data, but, despite recent progress in that direction, it is harder to use them to answer
questions over newly incorporated data because retraining them is prohibitively expensive. In
addition, they are incapable of indicating what input tables (or data) were used to answer a prompt,
which is necessary in discovery scenarios so users understand the provenance of the results. Soro
adapts quickly to new repositories using the new self-supervised technique, and its answers exactly
determine what tables contain the answer to the input question.

Retrieval-based question answering over documents (RQA). This class of systems concentrate
on query answering over textual documents, as opposed to relational data. RQA approaches often
include two components, a retrieval and a reader [11]. The retrieval gets top k documents from
large repositories so that the reader can output answers quickly [39]. Nowadays the reader is often
implemented by a LLM and much work is about how to combine the retrieval and LLM for best
performance [6, 32, 46, 48]. For example, RAG [46] uses a dense document retriever to augment a
seq2seq language model and trains them jointly to output the best answer. But RQA concentrates
on documents and not tables. Applying RQA to relational data discovery requires addressing the
challenges of table representation (as documents) and table (document) ranking which are not
trivial if human-annotated (question, table) pairs are unavailable. These are precisely the challenges
our work addresses.

Scaling laws for neural models. The performance of neural models largely depends on three
factors[38]: model size, training data size and compute budget. A lot of work [1, 3, 14, 21, 38] has
shown that there is a power-law relationship between the performance and any of three factors.
That means increasing model size, training data size or compute budget results in diminishing
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returns in performance. We observe similar trends during training, even though it remains difficult
to write a concrete formula for determining when to stop training. Instead, to save compute budget,
we combine Bayesian incremental training and self-supervised approach to automatically determine
the appropriate training dataset size as described in Section 3.2.

2.4 Challenges of Learned Discovery Systems

Existing learned discovery systems suffer from several shortcomings that delineate the challenges
we tackle in this paper.

C1. Collecting training data. Learned discovery systems trained on a table collection do not
perform well in new table collections, so they have to be freshly trained for each table collection.
Collecting training data is expensive and a major limitation of learned discovery systems. For
example, OpenDTR uses 12K <question,table-with-answer> pairs. The challenge is to avoid the
manually intensive task of collecting and labeling training data and deciding how large the training
dataset should be to become representative and thus lead to a system that performs well on the
target table collection.

C2. Table Representation. Learned discovery systems represent tables as vectors. OpenDTR uses
TAPAS [27] to represent a table with a single vector. As we show in the evaluation, the sparse and
simpler BM25 model sometimes outperforms TAPAS. More recently, GTR [65] represents tables as
graphs, similar to other efforts in data managements such as EmBDI [8] and Leva [75]. However, the
graph construction depends on the order of rows and columns, which has no meaning in relations.
Table representation has a big impact on system performance. Thus, the challenge is to find a dense
table representation that outperforms sparse models and that works well on relations (C3).

C3. Relevance Model. The model computes a question representation and measures the relevance
of different tables with respect to the question. The model must be designed in tandem with table
representation (C2). The challenge is to find a relevance model appropriate for relations that
performs well empirically when trained with synthetically generated questions (C1).

3 SELF-SUPERVISED TRAINING DATA COLLECTION

In this section, we present the new self-supervised strategy for training learned discovery systems,
thus tackling challenge C1. Creating a training dataset requires solving two problems; we introduce
novel strategies to address them:

¢ Generate question - table pairs. We introduce a strategy to automatically generate pairs of
questions and the tables with the answers (Section 3.1).

e Determine training dataset size We introduce a strategy to determine when the size of the

training dataset is sufficient to train the system (Section 3.2).

Throughout this section, we assume the existence of two additional components, a table rep-
resentation component and a semantic relevant model component, that are needed to create the
training dataset. Here, we treat these two components as black boxes. Then, in the next section, we
provide the details of their design and implementation.

3.1 Synthetic Question Generation

A training dataset consists of positive and negative samples of question-table pairs. We first explain
how to generate positive samples. We explain how to collect negative samples in Section 3.1.6.
The goal is to obtain a collection of question and table pairs, <q, T;>, where q can be answered
with T;". To automatically generate natural questions from tables a simple, yet problematic, approach
is to define question templates and then fill in the templates with data from the tables. Unfortunately,
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this approach does not lead to diverse questions, which are needed to increase the matching of
questions written by users, who may write questions very different than the templates.

Instead, we exploit the following observation. Large language models excel at giving diverse
natural language interpretations of a SQL query, so we first generate SQL queries from tables
and then translate those SQL queries to natural language. Specifically, our strategy consists of 3
different stages that we explain next: 1) design a SQL template structure; ii) generate SQL queries
from tables; iii) translate SQL queries to natural language.

3.1.1 SQL Template Structure. We generate SQL queries that match the structure of factual ques-
tions; those answered with one table and that do not require complex processing and reasoning.
More precisely, given a table T; that represents an entity E; with attributes E;.A; , ... , E;.A,,,, the
answer to a factual question exists in some E;.A; whether raw or via an aggregation operator such
as (Max, Min, Avg, Count). Factual questions are those that can be answered by search engines
using a knowledge base [66]. We use this format to drive the design of SQL templates, which are
generated by applying the following rules:

e Randomly include an aggregation operator, MAX, MIN, COUNT, SUM, AVG on numerical columns.

»

e Include > 1 columns with predicates of the form “= < > ”.
e Do not include joins as we seek a single table that answers q.

In generating questions we strive for including sufficient context and for making the questions
sufficiently diverse to resemble questions posed by real users. In more detail:

Context-rich queries. Whenever available, we include the table title with certain probability (as
detailed below) as a special attribute (column) “About” to generate questions. This is because the
table title often incorporates useful context. Consider the question “Where was he on February 19,
2009?”. This cannot be answered because we do not know what “where” refers to and who is “he”.
The question, however, makes more sense if a table titled “List of International Presidential trips
made by Barack Obama” can be integrated. We do not always include the title because it causes
the learning procedure to overemphasize its importance and ignore the table schema. Instead, we
introduce the title with certain probability «. If a SQL query contains m attributes in the predicates,
we include the title with probability & = 1/(m + 1): more attributes means more context is already
available so the title is less likely helpful.

Diverse queries. We want synthetic questions to resemble those posed by users. One way to
achieve that is to ensure the questions represent well the attributes contained in the tables. To
achieve that, we control how many predicates (referring to different attributes) to include in each
question by sampling at most m attributes. In addition, if the “About” attribute from above is
included, it makes a question refer to as many as (m + 1) attributes.

3.1.2  Generation Algorithm The generation algorithm must: i) deal with dirty tables; ii) sample to
avoid generating humongous training datasets when the number of tables in the input is large. We
first explain the strategy to deal with these two challenges and then present the algorithm.

Dealing with dirty data. Dirty tables in our context are those that become hard to generate SQLs
from. They include those with missing column names and cell values with too long text. They are
common in open data repositories [7, 26] and even enterprise scenarios. A cell with too long text is
a problem when translating from SQLs to questions because the translation model we are using
allows 200-300 words at most as input. Cells with text longer than Q3+ 1.5(Q3 — Q1), where Q1 and
Q3 are the first and third quartiles of the distribution of text length, are discarded. When generating
SQLs, the algorithm ignores columns without header names because the translation model asks
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for a relationship as input and the column name is the only option we have. Alternatively we can
recover the headers using similarity search [25].

Algorithm 1: generate_sqls(T, batch_size, sql_dict)

1 SQLs =[]
2 while len(SQLs) < batch_size do
3 T; = sample_table(T)

4 sel_col = sample_columns(T;.columns, 1)

5 num_cond = sample([0, .., Max_Cond_Num])

6 cond_cols = sample_columns(T;.columns, num_cond)
7 a = 1/(len(cond_cols) + 1)

8 use_title = bernoulli.rvs(a, 1)

9 if use_title then

10 L cond_cols.append(TITLE)

11 agg_op = sample_aggre_operator()

12 good_rows = collect_rows(Tj, cond_cols)

13 if good_rows is not empty then

14 r = sample_row(good_rows)

15 sql = create_sql(r, sel_col, cond_cols, agg_op)
16 if sql not in sql_dict then

17 L SQLs.append(sql) ; sql_dict.add(sql)

18 return SQLs

Sampling strategy. We do not know how large the training dataset must be to achieve good
performance. And extracting all possible SQL queries from a table collection would lead to too
large datasets and infeasible training times. For example, consider a table collection with 100 tables,
where each table has 10 columns and only 12 rows, we sample 4 columns per table and use only one

aggregator operator. In this case, the number of unique SQLs is at least 100 - 12 - 10 - (Zizo (113)) =

2,112,000. This number grows fast with more tables and rows. Training on so many questions
requires more hardware resources and time and quickly becomes prohibitively expensive.
Instead, the generation algorithm uses a sampling procedure that is driven by the training
process which asks for a collection of batch_size SQLs to be generated. This procedure is used by
the incremental training strategy we introduce (Section 3.2) to determine when a training dataset
is sufficiently large to achieve good performance on the task and thus stop. Now, within each
invocation of the algorithm, we want to ensure that the batch_size SQLs generated cover the table
collection well. We achieve that by using the following algorithm.
The Generation Algorithm. The algorithm combines 3 independent sampling procedures (Algo-
rithm 1). The first samples tables. The second samples columns given a table, and includes one of
the logical operators in the predicates. Then the alpha probability is computed (line 7) to decide
whether to include the table’s title. The third sampling procedure samples rows, given columns
of a table. When columns are numerical, the generation algorithm samples one of the aggregate
operators. In addition, and ahead of the sampling process, the algorithm makes an initial pass over
the data to: i) determine column types; and ii) compute the distribution of cell text length, which is
used to filter out outliers. The result of the algorithm is some number (batch_size) of SQL queries
used for training or validation.
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3.1.3 Translation from SQL to question. We use LLMs to translate SQL queries into natural language
questions. Specifically, we use the T5 [58] sequence-to-sequence model. T5 is pretrained on the
“Colossal Clean Crawled Corpus” (C4) [16], which includes internet documents from 365 million
domains with 156 billion tokens. Although C4 is very large, it is mostly in natural language, and the
pretrained T5 model learns a natural language to natural language mapping which is not directly
applicable for our purpose. So we fine-tune T5 using WikiSQL [76], a dataset with pairs of SQL
queries and their corresponding natural language representation that has been previously used for
tasks such as natural language question interface to relational databases [76].

SQL keyword | Custom T5 token | SQL keyword | Custom T5 token
select [S-E-L-E-C-T] where [W-H-E-R-E]

avg [AV-G] - [E-Q]

max [M-A-X] > [G-T]

min [M-I-N] < [LT]

count [C-O-U-N-T] and [A-N-D]

sum [S-U-M]

Table 1. SQL keywords for T5 model input

During fine-tuning, we update the weights of T5 without adding new layers. When encoding
SQL statements, and to escape SQL keywords, we include these in brackets following a format that
indicates the model they must be escaped, e.g., “where” becomes “[W-H-E-R-E]”. A complete list of
keywords is shown in table 1; those keywords will never appear in the output questions.

3.1.4 Assigning T;. Large table collections contain table duplicates and near-duplicates. Conse-
quently, a single question may be answered by more than a table. The approach considers any table
that can answer a question as a valid solution, and thus it creates multiple question table pairs. To
detect duplicates, our approach simply filters out tables with the same schema; it can be extended
to use duplicate detection techniques [18, 42] .

3.1.5 Validation data. 1t is a best practice to sample validation data from the same distribution
as the test data. However, this requires users to manually collect question and answer table pairs.
Our goal is to not require manual labeling by users, which we achieve via the new self-supervised
method. Now, we collect validation data in the same way we collect training data, using a holdout
set that the system automatically creates on the input table collection.

3.1.6  Completing training dataset The discussion so far has concentrated on generating positive
samples of question-table pairs. Now we explain how to generate negative samples. The data is
collected to train the relevance model that we explain in detail in Section 4.2. During test, the
relevance model always takes as input a small set of tables from first-stage retrieval. To emulate the
test scenario, given a synthetic question, the system calls the first-stage retrieval component to get a
small set of tables and labels those tables not the source of the question as negative examples which
are often called hard negatives [60]. If all tables are positive or negative we ignore this question.
The first-stage retrieval does not retrieve all the cells for a table but some cells of it because of the
table representation which we explain more in Section 4.1.

3.2 Bayesian Incremental Training

We introduce a strategy that increases the training dataset size incrementally until achieving good
performance, thus, removing the need to select a training dataset size a priori.

Our idea is to apply a new Bayesian incremental training process [43]. We first provide technical
background on Bayesian Neural Networks and then present our incremental strategy.
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3.2.1 Background on Bayesian neural networks. Bayesian neural networks attach a probability
distribution to the model’s parameters, thus paving the way to avoid overfitting and providing
a measure of uncertainty with the answer. We leverage Bayesian neural networks for a different
purpose, to learn when a model’s performance has reached a good quality and thus avoid keep
feeding expensive to generate training data.

A general approach to learn the parameters 6 of a neural network from dataset D is to maximize
the likelihood, § = argmax P(D|6). This point estimation of the parameters often leads to overfitting
and overconfidence in predictions [36]. To address this issue, Bayesian neural networks [5, 36]
learn a posterior distribution over 6 using the Bayes rule.

P(DI®)P(6)  P(DIO)P(9)
P(D) [ P(D|0)P(0)do

P(O|D) =

At inference time, the prediction is given by taking expectation over P(6|D),
P(ylx) = Ep(gip) (P(ylx, 0))

In practice, a list of 0y, - - - , 0, are sampled from P(6|D) and the prediction is made using bayesian
model averaging [67],

P(yl) = - D Pyl 0)
i=1

While it is easy to define a network for P(D|0), such as the multilayer perceptron (MLP), and spec-
ify a prior for 0, such as an isotropic gaussian, the posterior distribution P(6|D) is computationally
intractable because of the integration over 6. To address the intractability, variational learning [4]
uses another distribution g(68|¢), parameterized by ¢ to approximate P(8|D). Variational learning
optimizes ¢ to minimize the KL divergence of P(8|D) and q(60|¢). We use Bayesian neural network
to train the relevance model given a list of datasets Dy, ...D,.

3.22 Bayesian Incremental Training Strategy. The goal is to learn recursively a posterior distribu-
tion P(0|Dy, ..., D;) over the neural network parameters 0 given a prior distribution P(8|Dy, ..., D;_1)
and only one dataset D;. The prior distribution P(0|Dy, ..., D;_1) contains the knowledge the rele-
vance model learns from previous datasets so that the model does not have to start training from
scratch and uses D, only. This is the key to the efficiency gain.

Because the posterior distribution P(0|Dy, ..., D;) is intractable to compute, we use q(0|¢), pa-
rameterized by ¢ to approximate the posterior and then optimize ¢ using backpropagation [5],

b= argminZlogq (0'1p) —log P (0') —log P (D|6")

i=1

Where 6 is a sample from q(0|¢) and P (D|6") is determined by the relevance model (see Section
4.2). Next, we discuss the choice of q(8|¢) and P(0) and also some techniques to speed up training.

The approximate distribution, g(6|¢) . In the relevance model (see next section) 8 = {(W; , b;)},
where W; and b; are the weight matrix and the bias vector for layer i. To simplify and speedup
computation, we follow the approach in [5] and assume that each weight and bias is an independent
gaussian variable with mean p and standard deviation o, so that q(8|¢) can be fully factorized.
More concretely, random noise € is sampled from the unit gaussian N (0, 1), and o is derived by
o = log(1+exp(p)) and then a sample weight w in W; is given by w = p+0-€ = p+log(1+exp(p))-e.
So the parameter ¢ is the set of (y;, p;).
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To initialize yi;, we sample uniformly from (-1, 1). To initialize p;, we sample uniformly from
(=3, 0) and this makes the initial §; sit in the range (0.05, 0.7). Smaller initial 8; for each weight/bias
would make training much harder to converge.

The prior P(6) . We only have to specify a prior for the first dataset D;. After training is done
with Dj, the posterior P(0|D;) is the prior for the next training and so on. Then both the prior
and posterior are gaussian distributions. In particular, the initial prior is a gaussian with mean 0
and standard deviation 1 for each weight or bias, which is consistent with the initialization of the
parameter (y;, pj). In addition, in our scenario, an inaccurate initial prior is not an issue because
there are many training data points and as the training data increases, the impact of the initial
prior plays a lesser role.

Speedup of training and evaluation. First, we train the Bayesian neural network by sampling e
once per batch (as opposed to n times as in other context), thus speeding up the training process
without losing accuracy. Sampling n times is usually done to conduct model averaging: we achieve
the same effect by sampling across iterations. Second, on validation data, we use the posterior
gaussian mean of weights/bias for prediction instead of doing bayesian model averaging, further
reducing time. Together, these optimizations improve the training time of the Bayesian neural
network, making it substantially faster than the baseline approach.

4 TABLE REPRESENTATION AND RELEVANCE MODEL

In this section, we present the strategy for representing tables as vectors (Section 4.1) and the
semantic relevance model (Section 4.2), tackling challenges C2 and C3.

4.1 Table Representation

The goal is to find a table representation that facilitates matching with questions, thus addressing
Challenge 2 (C2).

We represent each table as a graph, where the nodes are the subject and object of every
(subject, predicate, object) triple in the table. The intuition is that a natural question that
can be answered with a table can be answered with a collection of triples from that table. Hence,
representing the table via its triples facilitates matching it with relevant questions during first-stage
retrieval. There are two advantages to representing tables as triples. First, a triple represents a basic
relationship. By representing tables with its triples, we obtain a more fine-grained representation
than state of the art models such as OpenDTR, which treats a table as a whole. Second, it is easier
to treat a triple as text than it is to treat a table, so we can use any off-the-shelf text encoders to
transform triples into their vector representation. Next, we provide an example first, present the
new row-wise complete graph method for table representation, and finish with encoding.

Example. Consider the running example "What are the business hours of Employment Resource
Center at Howard?", and the table that answers this question, T;", shown in Fig. 2. The question
contains two triples: (Employment Resource Center, at, Howard) and (Employment Resource Center,
business hours, ?) , where the placeholder “?” corresponds to the answer. At the same time, the table
contains two triples related to the question:

o (Employment Resource Center, Facility - Street Address, 1623 W. Howard) denoting the relationship
between Facility and the Street Address column, i.e. Employment Resource Center is located at
Howard street, which is close to (Employment Resource Center, at, Howard) in the question.

o (Employment Resource Center , Facility - Hours , M-F: 9AM-5PM; SA: 9AM-1PM) denoting the
relationship between Facility and Hours columns, with two column names connected by a hyphen
is the predicate. This relationship is close to (Employment Resource Center , business hours, ?)
implied in the question.
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Facility Hours Street Address City State
Public
Technology Employment _M-F. 9AM-5PM,_ 1623 W. — Chicago — IL
Resources Resource Center ~ SA: 9AM-1PM Howard
T
----- L [ .

Public Technology Resources

Fig. 2. Example of Row Wise Complete Graph (RCG)

Matching triples is the mechanism our approach uses to identify direct matches between a
question and a table.

Row-Wise Complete Graph (RCG). Representing a table as triples is common practice in the
semantic web [2] community. One challenge of doing so is to identify correctly the entity and
relationships the table represents. With an entity-relationship diagram available (assumed known
for semantic web), this is straightforward, but we do not have access to those in discovery scenarios
with large collections of tables. Instead, we use a complete graph to connect each pair of cells in
each row in the table, as shown in the Fig. 2. Furthermore, the table title is included as a special
column of each table, thus it is also represented in triples for every row. In such complete graph,
some edges will be spurious, while others will match the table question, as shown in the example.
We are not concerned with the spurious relationships because the first-stage retrieval will filter
some out if they do not match any question, and the relevance model in Section 4.2 will learn to
distinguish more. We show empirically in the evaluation the benefits of such a representation. Next
we explain how to encode the graph for first-stage retrieval.

Encoding. In this last step, the goal is to encode each triple (edge) from the graph produced by
RCG. First we convert each triple into a snippet of text. Specifically, a triple text always begins
with the table title and is then followed by column name and cell value of subject and object.
Double quotes and commas are added to indicate the boundary. E.g. The triple text for (Employment
Resource Center , Facility - Hours , M-F: 9AM-5PM; SA: 9AM-1PM) is "Public Technology Resources",
Facility "Employment Resource Center" , Hours "M-F: 9AM-5PM; SA: 9AM-1PM". Second, to encode the
tripe text, we use dense representations because we found they outperform sparse representations
based on TF-IDF and BM25, as we show in the evaluation section. We use vector representations
provided by a student dense retrieval model distilled from a pre-trained teacher dense retrieval
over text ([31]), we leave why and how to distill the student model to Section 5 . The student model
contains a question encoder (which we use to encode questions) and a passage encoder to encode
the triples. The resulting dense vectors for triples are then indexed for first-stage retrieval.

4.2 Relevance Model

We design a relevance model to solve the second-stage ranking problem, thus addressing Challenge
3 (C3). Given a question, g, the first-stage retrieval returns K;, triples arising from K; tables (there
may be multiple triples from the same table). The goal of second-stage ranking is to choose one
table T; from K;. The general idea is to match q to triples from T;. To do so, we use a pretrained
QA model over text [31] to match q to each triple, and then construct a matching representation
(q ,T;). The QA model takes a question and a text representation of a triple and outputs a match-
ing representation. We employ two techniques to boost the matching: triple annotation and
representation augmentation.

Triple annotation. We use the pretrained QA model over text [31] to provide input features for
each (question, triple) pair. To use the QA model, we convert triples to text, but this transformation
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to text is different than the performed during first-stage retrieval. Here, we seek to annotate the
triple to improve its context which, in turn, helps with ranking as such context often includes
sufficient information for the model to resolve semantic differences between words. To improve the
context, we use special tags to indicate the role of each string element in the triple and in the table.
For example, consider the aggregation question: "Which public technology resource in Chicago has
the longest hours of operation?”. A triple in Fig. 2 that refers to the column “Hours” is more likely to
answer the question than a triple from another table where the text “Hours” appears in a cell. We
incorporate the context as part of the input fed to the QA model: [_T_] to denote the table Title;
[_SC_] to denote subject column name c,. [_S_] for Cell(r, ¢, ), which means Subject. [ OC_] for
column name c,, which indicates Object Column. [_O_] for Cell(r, c,), which indicates Object.

When a triple involves two columns, we still include the table title as context. For example, the
triple (Employment Resource Center , Facility - Hours , M-F: 9AM-5PM; SA: 9AM-1PM)) is annotated
as “[_T_] Public Technology Resources [_SC_] Facility [_S_] Employment Resource Center [_OC_]
Hours [_O_] M-F: 9AM-5PM; SA: 9AM-1PM”. In contrast, the triple (Public Technology Resources,
Facility, Employment Resource Center) that only refers to one column is annotated as: “[_T_] Public
Technology Resources [_SC_] [_S_] [_OC_] Facility [_O_] Employment Resource Center”. That is,
“Public Technology Resources” works as title and subject.

Representation augmentation. We augment the representation by adding redundancy [63],
which is shown to reduce distributional shift and improve the matching process. A table is repre-
sented by the triples retrieved during the first-stage retrieval stage: (g, {p1, -, pm}). To augment
that representation, we represent the pair m times, including each time the question and each of the
triples, i.e., (¢, {p1,- -+ s pm}) + (g, pi)Vi € m. This redundancy helps to introduce diversity because
they share the label.

Model. Given a question q and K annotated triples ps, pa, . . ., px, we first feed all of them to the
pretrained QA model to get a feature vector X; for each (q, p;) pair, X; = qa_enc(q, p;). We do not
change the parameters of QA, so X; is fixed. We then project X; to a vector space w.r.t. table to
get a vector REP;(q, p;) = W, X; + b; and then apply element-wise max-pooling to all REP;(q, p;)
vectors in the same table to get an (g, T;) representation vector REP(q, T;):

REP(q, T;) = MaxPool ([REP,(q, p,’); REP,(q, ps’)...])

where T; indicates the table X; belongs to. Max-pooling helps select the best suitable triple p; for
the question. To construct multiple relevance representation, each X; is projected to another vector
space w.r.t. triple to get a vector REP, (g, p;) = W, X; + b, which is concatenated with REP(q, T;) to
get multiple equivalent relevance representation REP(q, p;, T;):

REP(q, pi, Tj) = [REP(q,T;); REP,(q, pi)]

Then a multilayer perceptron (MLP) [22] layer is added to compute the relevance score s(q, p;, ) =
MLP(REP(q, p;, T;)) and then a Sigmoid layer and Binary Cross Entropy is added to it to compute
the maximum likelihood estimation log P (D|6):

log P (D|6) = )" (i log o(s(g, pi)) + (1-ys) log(1-0(s(q, pi)))
i=1
where y; is the the 0/1 label. During prediction, tables are ranked according to a relevance score
computed as maxp,er; REP(q, p;, Tj). The larger the score the more relevant the table is to the query
and thus the higher in the ranking the table will appear.
To make max-pooling more effective, the learned table-perspective representation REP,;(q, p;)
must be as different from each other as possible in a table because each p; is supposed to be a
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different triple in that table. To this end, we add a regularizer, the Diversity Regularizer to the final
loss to minimizes the mean of mutual dot product of REP; (g, p;) in a table.

Summary of relevance type. Our relevance model ranks question/table relevance by using the
feature vector encoded by the pretrained QA model [31] and these vectors are good representation
of word semantics. In addition we incorporate table context (see the “Triple Annotation” paragraph),
that results in the relevance model ranking higher those tables that are semantically more related
(according to the context) to the question. The output ranking reflects the relevance of tables with
the question. When questions are ambiguous and the context is not sufficient to disambiguate the
meaning of the question, those relevant tables make it into the ranking, letting users resolve the
remaining ambiguity. To be robust to both context-rich and context-poor scenarios, our question
generation strategy (see Section 3.1) samples different number of columns from a table and includes
the title probabilistically, thus producing training datasets with different contexts. More columns
with the title means more specific questions (more context), while fewer columns and no title
means more ambiguous questions.

5 SOLO OVERVIEW AND IMPLEMENTATION

In this section, we first give an overview of our end-to-end system Soro to show how the components
work together to solve the table discovery problem. The system is built in Python using around
5,000 lines of new code. The system contains a CLI and a Ul interface for users to type questions
and then show top N tables in order of relevance to the question. Each result in the ranking is
accompanied by the provenance of that table including what triples match the question, so users
have an easier time understanding the results.

While building Sovro to implement the self-supervised approach explained in the previous sections,
we run into severe challenges that would render a learned discovery system impractical. Here, we
explain those challenges and the optimizations we implemented to address them (Section 5.2). We
start with an overview of Soro.

5.1 Overview

Fig. 3 shows the overview of Soro, which has an offline mode and online mode. In offline mode,
tables are decomposed into triples (step 1) which are then encoded (step 2), and indexed (step 3).
Then SQL queries are sampled from the target table collection (step 4) and then a SQL2Question
module translates SQL queries (step 5) into synthetic questions which are encoded (step 6) and
sent to a vector index (step 7, we use Faiss [34] as it is scalable and supports similarity search).
A small set of top triples are returned (step 8) for each synthetic question to train the relevance
model (step 9). If the more training data is needed, the training data assembler sends a message
(step 10) for more questions. In online mode, a real question is encoded (step t1) and sent to the
vector index (t2). A small set of triples are returned and together with the question are sent to the
released relevance model (t3) to predict the most relevant tables.

5.2 Key challenges and solutions

A dense first-stage text retrieval encodes questions and text snippets (triple text in our case)
separately so that the large amount of text snippets in a corpus can be pre-encoded before query.
However, existing off-the-shelf pre-trained dense retrievals are often very expensive because of
the transformer architecture [64] with many layers and so encoding can take very long time given
a large amount of triples. As an example, in the City of Chicago Open Data Portal, although the
number of tables is not large, some tables have as many as 10 millions of rows and in total will
result in around 42 billion triples. We experiment with 20 million triples on a single NVIDIA Quadro
RTX 6000 GPU node and use the state-of-the-art FiD dense retrieval [31] the version pre-trained on

Proc. ACM Manag. Data, Vol. 1, No. N4 (SIGMOD), Article 262. Publication date: December 2023.



Solo: Data Discovery Using Natural Language Questions Via A Self-Supervised Approach

262:xv

Offline |
4 Cy Cin 1 -
; Triple
[ sompins | = (cier)
- Cell G, 1) Cell G, m) Generator

SQLss@ ﬁ

SQL2Question

|
more questions needed 10

2 triples

= 9
6 - Training Data [ Relevancﬁ
synthetic synthetic Assembler training Model
i
questions questions triplesﬁ 8 data
Student 7 Teacher Rerank 3 Student | ]
- Question | — [Faiss Vector Index| < | Snippet <=
Online Encoder | 2 Encoder
questlon (Teacher Rerank] triple
real test quest vectors trlples@ 3 vectors
tl
Released
——> output
Relevance top tabl P
Model Op tables

Fig. 3. Overview of SoLo

TriviaQA [35], a high-quality dataset with 95K question answer pairs with evidence documents. It
takes around 6 hours to finish the encoding. To encode all 42 billion snippets of this dataset would
take a prohibitive amount of 525 days. Using cloud GPUs to parallelize encoding is an expensive
option. For example, at the time of this paper, Lambda [45] offers the Quadro RTX 6000 instance
with $0.5/h, and to finish the encoding of 42 billion snippets in one day with 525 GPUs (often you
are not allowed to launch so many instances) would cost 525 x 24 x 0.5 = $6,300. Then either the
user spends more money on machines or waits more time for encoding. So the first challenge is to
implement a light encoder without affecting the system accuracy.

Another major challenge with dense vector representation is the storage footprint of the resulting
vectors. Often each triple is encoded into a high dimensional vector of 768 floating point numbers.
If each number is stored with 16-bit float precision, a vector will use 768 X (16/8)/1024 = 1.5 k
storage and 42 billion vectors will take up around 60T. This is clearly beyond the capacity of many
organizations that would otherwise benefit from learned discovery systems. The second challenge is
to reduce storage size without affecting the system accuracy. Now we describe the solutions.

5.2.1

Student encoder. To get a cheap encoder, we use knowledge distillation [28] which uses the heavy
Fid encoder (the teacher) to guide the training of a light student encoder. So the student encoder is
supervised both from the TriviaQA data label (used for training the teacher) and the scores from the
teacher on TriviaQA. In Fid, there is only one encoder for both question and passage. To minimize
the accuracy drop during distillation, we use two with the student question encoder the same model
architecture as Fid but the student text snippet encoder having only 1 layer versus 12 layers in
Fid. With this design, we get around 5x speedup in encoding. Another bottleneck of encoding is
tokenization (on CPU) of input text which uses time close to the student model inference (on GPU)
time. We then use multi-threading and the result student encoder is around 10x faster than the
teacher also with multi-threading.

Light dense retrieval. It contains two components:

Teacher to rerank. To compensate for the accuracy drop by the cheap student encoder, we use the
teacher to rerank the n snippets from the student and output the top k ones to the relevance model.

5.2.2  Reduce storage size To reduce the storage, we use product quantization [33] where each
vector is split into m (divisible by 768) parts and each part is an identifier (1 byte) of one of 256
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clusters. The compression ratio is then (768*2+8)/(m+8) ~ 768*2/m where the 8 bytes is the integer
triple ID. To achieve comparable retrieval accuracy. E.g. with m=384, the student needs to retrieve
n=1,500 triples for the teacher to rerank and 3,000 for m=256. More triples with smaller m will
make the teacher rerank more expensive and also accuracy drops quickly. So m=384 is used by
default, thus using 1/4 of the storage footprint.

6 EVALUATION

In this section, we answer the main research questions of our work:

e RQ1. Does self-supervised data discovery work? The main claim of our work is that
learned discovery systems need repository-specific training data to perform well, and that our self-
supervised approach can collect that data automatically. We measure the extent to which systems
suffer when not specifically trained for a target repository and we measure the performance of our
approach. We will compare with strong baselines to contextualize the results. This is presented in
Section 6.1.

e RQ2. Does Bayesian incremental training work? A challenge of producing the training
dataset is to choose its size. Too large will lead to unnecessary resource consumption without any
accuracy benefits and possibly a degradation. Too small will lead to underperforming models. The
technique we introduce uses Bayesian neural networks to know when to stop. We evaluate its
effectiveness here when compared to a baseline approach that retrains iteratively using ever larger
datasets. This is presented in Section 6.2.

* RQ3. How does table representation affect accuracy? An important contributor to the end to
end performance is the representation of tables. We argued in the introduction that many existing
approaches do not work well and thus we introduced a new row-wise graph based approach. See
Section 6.3.

¢ RQ4. Microbenchmarks To provide a full account of the performance of the end to end system we
include microbenchmarks that concentrate in answering two questions: the performance differences
of using sparse vs dense indices during the first-stage retrieval, and the runtime performance of
the new approach, accounting for both offline and online components. See Section 6.4.

Metrics. The ultimate goal is to identify the table that contains the answer to an input question. To
measure the accuracy of the different baselines when given a set of questions we use the precision-
at-K metric (P@K) aggregated over all questions, as in previous work [26]. This metric indicates
the ratio of questions for which the answer is in the top K tables. We measure P@1 and P@5. We
do not use recall@K because in the benchmarks we use, each question has 1 single table as the
answer. More specifically, in one benchmark there is exactly one table per question, while in the
other only 7 questions out of 959 have 2 valid answer tables. Thus, measuring precision alone is
sufficient to understand the quality of the approaches we compare.

Datasets. We use two benchmark datasets that have been extensively used by previous systems
and that have been generated from real-world representative queries.

e NQ-Tables [26] This dataset contains 210,454 tables extracted from Wikipedia pages and 959
test questions which are a subset of the Google Natural Questions [44]. It is very popular in table
retrieval [26, 53, 61] because the questions are asked by real Google Search users. The tables are
relatively dirty, with 23.3% tables having some column header missing and 63% tables having cells
that contain long chunks of text.

e FetaQA [50] This dataset contains 10,330 clean tables from Wikipedia and 2003 test questions.
The questions are generally longer and more complex than those from NQ-Tables.

System Setup. We run all experiments on the Chameleon Cloud [41]. We use one node with 48
processing threads, 187G RAM, and an NVIDIA RTX 6000 GPU. The OS is Ubuntu 18.04 and the
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CUDA version is 11.2 and 10.2 (for other baselines). The system is implemented in Python v3.7.9
and uses pytorch 1.12.1.

6.1 RAQI. Self-supervised data discovery

We measure the P@1 and P@5 accuracy of the self-supervised discovery system ( that uses the
synthetically generated training data ) on the two benchmark datasets. To interpret the results, we
compare them against the following baselines:

BM25 (Table-Row-Tokens). Discovery systems such as Aurum [18] and Auctus [9] use traditional
information retrieval techniques based on BM25 to retrieve tables given keywords. We implement
this baseline to represent these discovery solutions. In particular, we index every row of a table,
along with the table’s title in Elastic [17].

Tabert. [70] is pretrained on 26 million tables with corresponding free text context. It does not
solve data discovery, instead it answers questions by pointing to the cell of a given input table.
Still, we use this model to understand if its table representation works for data discovery. We
emphasize that Tabert encodes a question and table pair simultaneously and thus does not scale to
large repositories of tables. We use our first-stage retrieval system to get a small set of tables as
candidates. And then we use Tabert to output a question embedding and a column embedding for
each column in a table. We use the mean column embedding and compute the cosine similarity
score of the question and mean column embedding to rank tables.

OpenDTR. [26] is a state-of-the-art learned discovery system. We use 3 variants: OpenDTR-Retrain,
OpenDTR-NoRetrain and OpenDTR-Synthetic.

e OpenDTR-Retrain is retrained on a human-annotated training dataset that has the same distribu-
tion as the test dataset. For example, when the target test dataset is NQ-Tables, OpenDTR-Retrain
is trained on NQ-Tables. This baseline requires collecting training data for each dataset and is thus
not desirable. Still, we include it because it allows us to understand the performance difference
between (expensive) human-collected training datasets and our approach.

e OpenDTR-NoRetrain is the system instance pretrained on a human-annotated training dataset
having different distribution from the test dataset. For example, when the test dataset is NQ-
Tables, OpenDTR-NoRetrain means the system instance trained on FetaQA. This baseline helps us
understand what happens to the system performance when a learned discovery system is deployed
on a new table collection without retraining.

o Finally, OpenDTR-Synthetic is trained on the synthetic questions generated by our self-supervised
approach. We use this baseline to understand the impact of the new table representation and the
semantic relevance model.

GTR. [65] is a state-of-the-art second-stage ranking model. Because it only solves second-stage
ranking, we use our first-stage retrieval system to obtain results end-to-end. We implement 3
variants as before: GTR-Retrain, GTR-NoRetrain and GTR-Synthetic.

Experimental Setup. We train OpenDTR models using the released official code. In our system,
we encode each triple as a 768-dimensional vector using the Fid Retriever [31] pretrained on the
TriviaQA dataset. This results in 41,883,973 vectors on NQ-Tables, and 3,877,603 vectors on FetaQA.
We index those vectors using Faiss [34]. We retrieve at least 5 tables during first-stage retrieval
and then apply the second-stage ranking. We use the original code to train the GTR models. We
train our system, OpenDTR-Synthetic and GTR-Synthetic using the exact same set of training data
produced in a self-supervised manner.

6.1.1 Main Results We show the P@1 and P@5 in Fig. 4 and Fig. 5, respectively. We highlight
several key insights:
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Fig. 4. P@1 Accuracy on baseline datasets
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Fig. 5. P@5 Accuracy on baseline datasets

Baselines underperform on new table collections when not specifically retrained. The first
observation we make concerns OpenDTR-NoRetrain and GTR-NoRetrain. When these systems are
trained with data from one benchmark and evaluated on the other, their performance deteriorates
significantly, by 30 and 18 points in the case of OpenDTR on NQ-Tables and FetaQA, respectively.
And by 20 and 4 points in the case of GTR-NoRetrain. This demonstrates that without retraining, a
learned table discovery system vastly underperforms on new table collections.

Off-the-shelf pretrained Table QA representation does not generalize to table discovery.
The very low accuracies of Tabert show pretrained embeddings in table scenario are hard to applied
to related tasks and training is needed to get good performance.

SoLo produces synthetic training datasets that achieve high accuracy. Sovro vastly outper-
forms non-trained systems. Compared to the NoRetrain variants, Soro achieves 30 and 15 more
points than OpenDTR-NoRetrain and GTR-NoRetrain in NQ-Tables and 40 and 13 more points in
FetaQA. This improvement in accuracy comes at the same cost for the human, who does not need
to collect data and label it manually because our approach does it for them. This result validates
the main contribution of our paper.

SoLo is competitive in performance compared to the retrain baselines without needing to
pay the cost of obtaining a new training dataset. Even when compared to the other baselines
retrained on benchmark-specific training datasets, Soro achieves good performance. In fact Soro
outperforms OpenDTR-Retrain in both datasets by 3 and 25 points in NQ-Tables and FetaQA re-
spectively. It also outperforms GTR-Retrain in the FetaQA benchmark by 6 points. It underperforms
GTR-Retrain in the NQ-Tables dataset by only 3 points, but again, to emphasize, without paying
the cost of collecting data manually.

SoLo always outperforms BM25, but this is not true for the other baselines. BM25 repre-
sents the retrieval performance of non-learned discovery systems. Note that OpenDTR-NoRetrain
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underperforms BM25 in NQ-Tables by 6 points. This means that, without our approach, and without
the ability to collect a new dataset, a non-learned data discovery solution will outperform the
more sophisticated OpenDTR. Or rather, that collecting high-quality training data is decidedly
important for learned table discovery to perform well on new table collections. GTR does better
than OpenDTR when compared to BM25—recall it uses our new first-stage retrieval. In contrast,
Soro always outperforms BM25.

Soro performance benefits go beyond the synthetic data generation. To test this hypothesis
and evaluate the contributions of the new table representation and relevance model we use the
same synthetically generated dataset produced by our approach to train all baselines and compare
their performance; this corresponds to the Synthetic baselines. As shown in the figures, when all
baselines are trained on the synthetically generated dataset, SoLo outperforms every other baseline
by 20, 15, 33, and 15 points (from the left to the right of the figure). These results validate the design
of the table representation and retrieval model.

The trends are similar and accentuated when measuring P@5. The trend when observing
P@?5 is the same as in P@1, with the total accuracy much higher, as expected. This suggests that
when the end user has the bandwidth to manually check a ranking of 5 tables that may answer
their question, they are much more likely to identify the answer they are after.

6.1.2 In-depth analysis of results We ask: Why do the Retrain baselines perform worse than

SoLo despite having access to high-quality manually collected training data?. When ana-
lyzing the logs for the FetaQA benchmark, we find that Soro performs better at matching entities
in the question and table at the word level. This is largely because Soro takes advantage of the
OpenQA [31] model which is pretrained on the TriviaQA [35] question dataset. The same reason
applies to OpenDTR-Retrain. Note, it is common practice nowadays to transfer knowledge from a
model pretrained on high-quality human data [57]; but this is orthogonal to SoLo’s users, who do
not need to annotated data manually.

On NQ-Tables (where Soro underperforms GTR-Retrain), we find Soro is more likely misled
by long cells that contain information related to the question, while GTR-Retrain performs better
in exploiting the table cell topology structure to find the ground truth table. We use an indicative
example from our logs. Given the question “where is hindu kush mountains located on a map”, SoLo
chooses a table with a long cell text “The general location of the Himalayas mountain range (this
map has the Hindu Kush in the Himalaya, not normally regarded as part of the core Himalayas)”. The
text does indeed contain an answer. In contrast, GTR chooses a table with a cell containing “Hindu
Kush” and a cell containing the coordinates, which gives a more precise answer and is what the
benchmark was expecting. It is arguable whether one answer is indeed superior to the other for an
end-user, but it is certainly the case the benchmark favors GTR in this case. Finally, because FetaQA
is a relatively clean benchmark and most cells contain simple information, we do not see the same
effect in this dataset, i.e., Soro is less likely to select a long cell and it consequently outperforms
GTR-Retrain and OpenDTR-Retrain. Note that in any case, the performance of SorLo, which is close
to the other baselines, is achieved without any human-collected dataset.

Why do the Synthetic baselines underperform?. GTR models tables as a graph where each
cell is a node and it is connected only to neighboring cells. This representation is unnatural for
relational data, where the order of columns does not matter. Such representation makes the model
brittle to situations where the distribution of the training dataset and the test set differs, such as it
is the case when comparing the synthetically generated training dataset produced by our approach
and the test set of the benchmarks. Concretely, it is often the case that the subject and object in a
relation are not neighbors and thus do not make it into the representation used by GTR. From our
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analysis we observe that GTR is more likely to overfit on the synthetic data, thus explaining the
deterioration of quality. In contrast, our table representation does not suffer from those problems,
thus preventing overfitting. A similar phenomenon explains the results for OpenDTR-Synthetic.
Although this baseline does not use the same table representation as GTR, it encodes question and
table together, using a pretrained TableQA [27] model which seems brittle to the format of the
training data.

6.2 RQ2. Bayesian Incremental Training

We measure the P@1(5) accuracy and training cost (the total training time and epochs used) using
the new Bayesian incremental training on the two datasets and compare it against a baseline
(Simple) that sequentially grows the input training dataset and trains the model from scratch until
it performs well.

Experimental Setup. We generate 10 partial training datasets Dy, - - - , D1 for each benchmark,
each D; with 1,000 different questions generated as in Section 3.1 with corresponding triples.
Given a fixed {Dy, - - - , Dy, }, the simple approach trains the relevance model ( with state-of-the-art
Xavier initialization of parameters as in Pytorch [54] ) using maximum likelihood estimation and
an early-stop strategy with patience of 1 epoch (each epoch is a full pass of {Dy, - - - , Dy, }). This
means if a model checkpoint does not improve the P@1 accuracy in two continuous epochs, the
training process stops. The patience of dataset for incremental training is also 1, i.e. if either
{Dy,- -+ ,Dmy D11} or {Dy, -+, Dpy, Diyy2 } does not improve P@1 over {Dy, - - - , Dy, } the whole
incremental training process stops.

The same patience of epoch and patience of dataset settings are applied to the Bayesian approach.
By “Prior(D1,- - -, D;), Dp,,” we indicate that (D1, - - -, D;) have been used for training previously
and thus they constitute the prior for training on D,,. During test, we sample 6 versions of model
parameters from the posterior distribution, and use also the posterior mean parameters, then take
the average of predictions of the 7 versions of parameters as output.

Approach Time Training Eval Test Training Cost
Step Datasets P@1 | P@5 | P@1 | P@5 S (epochs)
t1 D1 72.65 | 82.45 | 42.02 | 70.80 6,134 (7)
t2 D1,D2 73.70 | 82.75 | 42.65 | 70.91 9,258 (7)
t3 D1, D2,D3 74.10 | 82.45| 40.15 | 70.59 12,168 (7)
Simple t4 D1, D2, D3, D4 74.35 | 83.05 | 40.15 | 69.76 21,650 (10)
t5 D1,D2,D3,D4,D5 | 73.00 | 82.30 | 42.54 | 70.91 7,829 (3)
t6 D1,D2,D3,D4,D6 | 72.65 | 82.80 | 42.96 | 71.74 7,752 (3)
Sum 64,790
t1 D1 66.30 | 81.60 | 41.71 | 70.70 2,657 (3)
t2 Prior (D1), D2 69.70 | 82.35 | 43.07 | 71.32 7,221 (8)
Bayesian t3 Prior (D1, D2), D3 69.65 | 82.50 | 41.40 | 71.32 3,553 (4)
t4 Prior (D1, D2), D4 69.40 | 82.25 | 40.88 | 70.70 2,679 (3)
Sum 16,108

Table 2. Bayesian/Simple training results on NQ-Tables

Results. Table 2 and 3 shows the results on NQ-Tables and FetaQA. We summarize the insights:

e Our new Bayesian incremental approach takes much less training time and achieves better test
accuracy than the simple approach. On NQ-Tables, the simple approach takes 64,790 seconds for
the whole incremental training and chooses {D1, D2, D3, D4} on the evaluation dataset. In contrast,
the Bayesian incremental approach takes only 16,108 seconds (chooses {D1, D2}), a reduction of
runtime of 4x, or equivalently 18 hours vs only 4 hours to find a train the system for a new table
collection. This reduction in runtime makes it more feasible to keep the system up to date as the
underlying data tables naturally change. On FetaQA, the simple approach takes 25,028 seconds,
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while the Bayesian incremental approach takes only 15,554 seconds, about 62% of simple approach
with close P@1 (82.73 vs 82.53).

e More data does not necessarily lead to better accuracy. Since the training data are generated
automatically, there is redundancy and noise. As shown in Table 2, {D1, D2, D3} performs worse
than {D1, D2} and even {D1}. Simply adding more data to the simple approach does not suffice and
also it slows down the entire process. This further validates the Bayesian incremental approach.

Approach Time Training Eval Test Training Cost
Step Datasets P@1 | P@5 | P@1 | P@5 S (epochs)
t1 D1 76.70 | 80.25 | 82.88 | 93.06 2,519 (4)
t2 D1, D2 77.05 | 80.20 | 83.08 | 93.01 7,147 (8)
Simple t3 D1, D2, D3 77.15 | 80.25 | 82.53 | 93.01 6,889 (6)
t4 D1, D2, D3, D4 76.35 | 79.90 | 82.63 | 92.96 4,253 (3)
t5 D1, D2, D3, D5 76.80 | 80.05 | 83.33 | 93.06 4,220 (3)
Sum 25,028
t1 D1 75.85 | 80.00 | 82.43 | 92.66 3,225 (5)
2 Prior (D1), D2 | 76.30 | 79.90 | 82.73 | 92.81 2,584 (4)
Bayesian | 3 Prior (D1, D2), D3 | 75.80 | 79.80 | 82.93 | 92.76 5,104 (8)
t4 Prior (D1, D2), D4 | 75.65 | 79.65 | 82.83 | 92.71 4,641 (7)
Sum 15,554

Table 3. Bayesian/Simple training results on FetaQA

6.3 RQ3. Effect of table representation

In this section, we demonstrate the impact of RCG by comparing its performance against other
state of the art baselines:

e Sliding Token. Many existing approaches concatenate the table cells from left to right and
include tags to indicate schema information [12, 27, 69]. To use this approach for learned data
discovery, the resulting tokens become the input of OpenQA, which we use to obtain a vector
embedding. Because the input size of OpenQA is bounded [68], we tokenize following the approach
in [68] and feed a sliding window over the cells.

e RCG&generated text. RCG produces (subject, predicate, object) triples. We ask whether
a textual representation of the triples performs better than the purely structured triples: the intuition
is that text would be a closer representation to the input questions than triples. In this baseline,
we transform triples into text by fine-tuning the T5 model [58] using the WebNLG [19] dataset.
Then, we feed triples to the fine-tuned model and obtain text as output, which is itself indexed for
first-stage retrieval.

Experimental Setup. We apply the two baseline strategies to the target table collection and this
results in a vector index and a first-stage result and a trained relevance model for each strategy. We
show the performance of both the first-stage dense index only and the end-to-end system Soro,
i.e,, index plus relevance model.

Results. Fig. 6 shows the results. RCG outperforms the other baselines. The plot shows P@Max
(performance with an oracle second-stage ranking), thus isolating the effect on first-stage retrieval.
While the performance of all baselines is similar on the simpler FetaQA (cleaner dataset), RCG
vastly outperforms the Slide Token baseline in NQ-Tables. This is because tables in the NQ-Tables
baseline have more columns than FetaQA. 25% ground truth tables have more than 18 columns
with an average of 170 tokens per row. In contrast, in FetaQA, the 75th percentile is 6 columns and
only 17 tokens per row on average. The RCG approach will relate cells no matter how far apart
they are in the table, as per the construction of the complete graph. In contrast, the common table
representation methods from the state of the art lose context when tables are wide, as evidenced
by the Slide Token performance on NQ-Tables. Finally, the performance gains during first-stage
retrieval carry on to the end-to-end system.
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B Sliding Token
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NQ-Tables FetaQA
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Fig. 6. Effect of table representation

Finally, generating text from triples (the RCG&generated text baseline) makes the system much
slower (by requiring an inference from the T5 model per triple) without yielding significant accuracy
gains. On further analysis, we found that the generated text did not really help with retrieving
better content and that in some cases it was erroneous, thus hurting the end-to-end performance.

6.4 RQ4. Microbenchmarks

We consider the impact of different indexing techniques on the first-stage retrieval component
(Section 6.4.1) and we demonstrate the impact of the techniques described in (Section 5.2) on
runtime in Section 6.4.2.

6.4.1 First-Stage Retrieval Indexing. The first-stage retrieval index determines the input of the

relevance model (Challenge C3), affects the training triples (Challenge C1) and also determines the

table representation (Challenge C2). Here, we measure the effect of choosing indexing techniques:

o First Stage (Sparse Index) We index and retrieve triples using the BM25 algorithm (on Elastic-
search) that measures the similarity of question and triple using TF-IDF features [59].

o First Stage (Dense Index) This is our first-stage retrieval implementation which uses the Fid
Encoder and Faiss index.

e SoLo (Sparse Index) We index triples using Elasticsearch, and then construct training data
from the sparse Index using the same synthetic questions. We then retrain the relevance model.

Results. Fig. 7 shows the results. The Dense Index outperforms the two sparse indices baselines.
The performance gains originate during first-stage retrieval, especially for NQ-Tables with 18
points difference and results in 13 points and 6 points in P@5 and P@1.

P@Max P@1 = Sparse Index P@5

I | Dense Index

92.61 93.56

NQ-Tables FetaQA

NQ-Tables FetaQA NQ-Tables FetaQA

Fig. 7. Effect of index type

The Relevance model performs well using the dense index. On FetaQA, the first-stage gap
P@MAX is 0.95 points, but the P@1 gap is increased to 1.35 points i.e., the second-stage relevance
model benefits more from dense index. The sparse index will retrieve triples based on the overlap
with the input question. Because we produce questions from the tables and we use the index to
construct training data, this indexing method bias the training dataset towards triples that overlap
the most with the input question. The dense index retrieves triples based on semantic similarity
that goes beyond the purely syntactic level, resulting in higher performance.
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6.4.2 Run-time Performance. We evaluate the performance of OpenDTR, GTR, Soro, SoLo(No
STUDENT) (where the teacher encoder is used) and Soro(No PQ) (where vectors are added to index
without using product quantization). The results on NQ-Tables are summarized in Table 4.

SoLo SoLo

Pipeline SoLo (No (No OOP;;IiICDiZlR RStfaI.{in
Student) | PQ)

Encoding Time 1.15h 10.95h . 0.4h .
(# vectors) (41M) | (41M) (0.17M)
Index Time s | |60 : :
(Size in GB) (166) (616)
Tralmr}g da‘ta 24h - - Manual Manual
collection time
Training time 45h - - 4.6h 4.3h
End-to-endPrediction | 2.6 s/q 0.02 s/q
throughput (Index - - (exhaustive search in -
(Index type) on disk) memory)

Table 4. Performance of different systems on NQ-Tables

Results. Table 4 shows the results, with one row for each of the four categories explained above.
¢ Encoding There are 170k tables in NQ-Tables. SoLo generates 41M and OpenDTR only 0.17M,
one per table. Although Soro produces more vectors than OpenDTR, it takes less than 3x time
(1.15 h vs 0.4 h) to encode the whole table repository. Soro is 9.5x (1.15 h vs 10.95 h) faster than
SoLo(No sTUDENT) and this makes our system deployment more practical.

¢ Building index Soro supports an on-disk index to scale to larger table collections, while
OpenDTR uses an in-memory index. It takes only 960 seconds for Soro to index 41M vectors and
Soro uses around 1/4 storage size of SoLo(No PQ).

e Training data collection Soro automatically collects training data and then it takes 2.4 h to
train, while both OpenDTR and GTR-Retrained rely on manual work to collect data. As an example,
the NQ-Tables dataset contains 9,534 train questions and 1,067 evaluation questions; collecting
these manually is tedious.

e Training runtime All systems were trained on the same synthetic dataset generated by our
approach so the training time is similar across approaches.

o Inference throughput Soro achieves subsecond query latencies, permitting interactive querying.
SoLo’s throughput is lower (2.6 s/q vs 0.02 s/q) than OpenDTR because SoLo does not assume
vectors fit in memory, thus working in more general scenarios. If we load vectors into memory, the
throughput is similar.

The main takeaway message is that the prediction pipeline is slower because of on-disk index
search for scalability, which we think can be further optimized, the main gain of Soro is its ability
to automatically generate training datasets that lead to high-performance models, as demonstrated
in this section.

7 CONCLUSIONS

Learned discovery systems offer an attractive way to find data among large table repositories,
but they require manual collection of training data, thus limiting their adoption. In response,
we introduce a new self-supervised approach to automatically assemble training datasets. We
introduce a new table representation method and associated relevance model that makes the system
outperform existing approaches. We build a system, Soro, that implements the new strategies and
further includes optimizations to reduce encoding and inference time, and storage footprint. Soro
outperforms the state of the art baselines. All in all, this work contributes to the growing area of
learned data discovery systems.
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