
Termite: A System for Tunneling Through Heterogeneous Data
Raul Castro Fernandez, Samuel Madden

ABSTRACT
Data-driven analysis is important in virtually every modern orga-
nization. Yet, most data is underutilized because it remains locked
in silos inside of organizations; large organizations have thousands
of databases, and billions of !les that are not integrated together
in a single, queryable repository. Despite 40+ years of continuous
e"ort by the database community, data integration still remains an
open challenge.

In this paper, we advocate a di"erent approach: rather than
trying to infer a common schema, we aim to !nd another common
representation for diverse, heterogeneous data. Speci!cally, we
argue for an embedding (i.e., avector space) in which all entities,
rows, columns, and paragraphs are represented as points. In the
embedding, the distance between points indicates their degree of
relatedness. We present Termite, a prototype we have built tolearn
the best embedding from the data. Because the best representation
is learned, this allows Termite to avoid much of the human e"ort
associated with traditional data integration tasks. On top of Termite,
we have implemented aTermite-Joinoperator, which allows people
to identify related concepts, even when these are stored in databases
with di"erent schemas and in unstructured data such as text !les,
webpages, etc. Finally, we show preliminary evaluation results of
our prototype via a user study, and describe a list of future directions
we have identi!ed.

ACM Reference Format:
Raul Castro Fernandez, Samuel Madden. 2019. Termite: A System for Tun-
neling Through Heterogeneous Data. InProceedings of (CIDRÕ19).ACM,
New York, NY, USA, 6 pages.

1 INTRODUCTION
Data integration Ð combining diverse data sets, from di"erent orga-
nizations or with heterogeneous schemas Ð has been a long standing
challenge for the database community, which we continue to strug-
gle with today. At the core of this challenge is the fact that modern
relational query processors require data to be carefully organized
into a uniform schema. In particular, for relational operators to
provide meaningful results, di"erent columns that reference the
same concept in di"erent data sets must use exactly the same values
and syntax. Duplicates must be eliminated. Values must be nor-
malized. Errors must be cleaned. Although these challenges have
been a boon to academic researchers who have published hundreds
of papers on each of these topics, they also mean that most data
integration projects are hugely time consuming and expensive, and
that many data sets that should be integrated never are due to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIDRÕ19, January 2019,
© 2019 Copyright held by the owner/author(s).

the complexity of creating su#ciently uniform data for relational
operations to produce well-de!ned answers.

In this paper, we advocate an alternative approach. Instead of
insisting on clean data and a standardized schema, we argue that
we should accept that many closely related data sets will never be
fully integrated into a single relational system. Instead, we propose
Termite, aÒdirt-lovingÓ database system that provides as much of
the power of declarative querying as possible, but on top of these
non-uniform data sets.

The desiderata for a dirt-loving database are clear:
• It should able to query structured but di"erently-schemaÕd tabu-

lar data, retrieving related rows from these di"erent tables.
• It should be able to relate structured to unstructured data (i.e.,

text !les), highlighting portions of the text !les that are related
to speci!c records in the structured data.
Termite supports these goals through a novelTermite-Joincapa-

bility. Unlike a conventional relational query processor, where most
joins are based on exact equality matches, in Termite, the join oper-
ation retrieves data that is incloseproximity to some input query.
That proximity indicates degree of relatedness, and it is measured
as the distance between vectors of an embedding that represents
all cells, rows, columns from relations as well as text from web
pages, and emails, and other !les. Theserelational embeddingsare
similar to the word embeddings used for modelling language in
text processing [17, 20], but are specially constructed to work well
for tabular datasets that are relational in nature.

The key advantage of the embedding representation is that be-
cause both structured and unstructured data are represented as
points (vectors), understanding whether a tuple in a relation is
related to a text !le boils down to measuring the distance between
their vector representation. The key challenge is to assign vectors
to data in such a way that distance between data points in the
embedding indicates data is indeed related.

Turing Award

MacArthur

-

awards

-

MacArthur

45

Sarah

name

CSAIL

CSAIL

Dina Katabi

89

32

Alex Arrow

CSAIL

Bio11

Barbara Liskov

Regina Barzilay

id afÞliation

67

Aero

Ω’(x)

Nir Shavit is a professor of computer science at
CSAIL, MIT. Shavit is a winner of the 2004
Godel Prize in theoretical computer scienceÉ

Relational
Extractor

Text
ExtractorΩ’’(x)

Figure 1: Distance in the embedding indicates relatedness
Consider the example ofFig.1, which contains a relation and an

excerpt from Wikipedia. Suppose we want to know what awards
have been granted to professors working at CSAIL. If we only
looked at the table, we would miss the Godel prize being awarded

CIDRÕ19, January 2019, Raul Castro Fernandez, Samuel Madden

!"#

$%&'

(%)!"#

$%&'

(%)

!"#
!"#

$%&'

(%)!"#

$%&'

(%)

Information
Extractor

Relational
Embedder

Data
Encoder

Learn
Embedding

v u
w

ÉÉÉÉ
ÉÉÉÉ

1. Extraction 2. Encoding 3. Learning 4. Refinement

ReÞne
Embedding

5. Serving

Figure 2: End-to-end overview of the 5 components of the Termite system
to Nir Shavit. In the embedding, the vector representation forGodel
prize is close to the vector forTuring awardbecause: i) it is an
award, i.e., it isgranted, orwon bysomeone, and; ii) it is, in this case,
awarded to someone who works atCSAIL. Note that a traditional
TF-IDF based retrieval approach would not be able to identify this
relationship. TheTermite-Joinoperator relates these two together
because theysharerelationships (granted/won award) and entities
(CSAIL). With Termite, we can build an embedding on which the
Termite-Joinoperator works without writing manual rules. Instead,
Termite only needs pairs of elements that are related to each other;
the pairs can be generated automatically from the sentence or tuple
in which the elements appear.

Building the embedding. A principled way of building the em-
bedding is to represent relational and unstructured data in some
multi-dimensional tensorÑwhich would be very sparseÑwhere di-
mensions correspond to the di"erent entities in the data, and then
factorize the tensor to obtain a dense embedding that would contain
information about how the entities are related to each other. This
approach is so far only theoretical because we do not know how to
precisely represent all data in a tensor form, or how to factorize it
in such a way that the resulting embedding possesses the desired
equivalence between vector distance and data relatedness. Instead,
we propose tolearnthe embedding directly from the data. The cen-
tral theme of this paper isTermite, a system to train and build the
embedding, and an operator,Termite-Jointo query the embedding
to relate structured and unstructured data.

As an initial step towards Termite, we have built a proof of con-
cept focused on helping with discovery problems. We conducted a
user study to understand the bene!ts of theTermite-Joinoperator
to discover data across structured and unstructured data such as
MIT News, Wikipedia, personal webpages as well as relational data
from the MIT datawarehouse and DBPedia. With Termite, users
found faster more relevant content than with a baseline solution
consisting of a full-text search index carefully built. We comple-
ment our evaluation with results on record linkage and concept
expansion, two tasks closely related to the discovery problem.

We discuss the TermiteÕs architecture rationale in section 2, the
current learning pipeline in 3, followed by evaluation results (4),
related work 5 and a brief discussion in 6.

2 TERMITE’S ARCHITECTURE RATIONALE
The idea of building an embedding with Termite was inspired by
the impact of statistical language models such as word embed-
dings [17, 20] on the NLP, speech recognition and information

retrieval communities. We quickly discovered that it is not straight-
forward to directly use these existing techniques, mainly because
the assumption that all those models makeÑthat words that appear
often together are related to each otherÑdoes not translate to the
set-oriented relational world of tuples, attributes, and tables, which
carry much more structured information. Furthermore, it is not
clear how to merge relational data with unstructured sources.

We have conceptualized the challenges faced by Termite into 5
loosely coupled components (Fig.2). Each stage presents a number
of research opportunities. Rather than exploring in depth each one
of them, we decided to !rst build an end-to-end prototype so we
can learn how the di"erent stages are interconnected to each other.
We describe these stages and our initial implementation below:

Extraction. The data extraction component converts raw relations
and text into a set of bag-of-words (BoW) representation, e.g., one
BoW per triple extracted from a sentence, or per cell value from a
relation. To do that, it uses di"erentconnectors. For unstructured
data, we use state-of-the-art information extraction platforms such
as [10Ð12] to extract entity-relationship-entity triples. For relational
data, a relational discovery tool guesses [6, 7] each relationÕs key
and uses it along with the attribute values to produce triples, e.g.,
John:value - age:attribute - 22:value.

Encoding. The encoding component transforms each BoW into a
vector. The vectors must be !xed-size so they can be used as the
input to the learning component. A straightforward !xed-sized
representation such as one-hot encoding has two big drawbacks.
First, its dimensionality depends on the vocabulary size, which is
large even for small datasets. Second, the vocabulary size must be
known a-priori in order to size the vectors, which is inconvenient.

Our encoding component, instead, dictionary-encodes the vocab-
ulary terms as integers, which are assigned incrementally as new
words appear. These integers are indexed into a !xed-sized vector
of length F using a hash function in1 . . . F. We size the vector to
minimize the number of collisions, which can be achieved using
the birthday paradox and the expected number of words per BoW.
Because collisions will occur anyway, we make a second attempt
to insert the integer using a di"erent hash function. With this en-
coding strategy we have seen performance improvements during
learning of up to 2 orders of magnitude compared with one-hot
encoding for a vocabulary size of 1M terms.

Learning and Re�nement. These components are explained in
detail in section 3. Here, we only mention that given the current
extractor and encoder components, which produce triples of the

Termite: A System for Tunneling Through Heterogeneous Data CIDRÕ19, January 2019,

form subject-predicate-object, the training dataset is built by gener-
ating pairs from such triples:subject-predicate, predicate-objectand
subject-object. The pairs from the extracted triples are the positive
pairs. Suppose we have positive pairs that always relate a professor
to a phone number, and a phone number to an o#ce. Even if we
do not have an explicit pair relating the professor to the the o#ce,
both entities will appear closer to each other in the embedding:
thatÕs a key advantage ofjoining in the embedding.

To obtain negative samples we randomly assemble pairs that
are not part of the positive training set, similar to the approach
used in [3]. This makes it easy to generate negative pairs, but it
introduces anomalies during the learning process i.e., unrelated
points that end up close to each other not because they are related,
but because they were not explicitly provided as negative pairs.
The re!nement component ameliorates some of the anomalies.

Serving.The serving component is TermiteÕs raison dÕetre. It makes
the embedding available to answer database queries. Applications
that traditionally take most of the time from analysts who need to
perform themÑand that are therefore not available to organizations
without the luxury of dedicated analystsÑbecome straightforward
to perform if an embedding is available.

One example is data exploration, which we refer as the process
of visualizingschemas to learn the content they represent,summa-
rizing relations to get a glimpse of the information they convey,
understandinghow two relations are related to each other without
going through the process of !guring out how to join them. Each of
these tasks would take a long time to solve, but are really simple to
solve in a vector space: 1) plot vectors in a reduced dimensionality
to visualize the schema; 2) !nd a subset of diverse vectors to sum-
marize a relation; 3) !nd vectors from the two relations we want to
join that are close to each other in the embedding.

Another example is the task of discovering how data from re-
lations and unstructured sources is related to each other. Useful
for discovery, !lling missing values and verifying information that
appears in a table among others. This is the !rst application we
have focused on and the reason for theTermite-Joinoperator we
have implemented and focus on in the rest of this paper.

3 BUILDING A GOOD DATA EMBEDDING
We have explained how to transform a collection of text and rela-
tions into a collection of triples. Here, we explain how to turn the
triples into a collection of vectors, (learning component ofFig.2)
in (3.1). We then explain how to re!ne the embedding (component
4 in the !gure) and brie$y theTermite-Joinoperator.

3.1 Obtaining a Basic Embedding
Methods such as [3, 16, 22] consume triples from a knowledge base
to learn the latent variables thatexplainobservable data, which
helps among other tasks, with knowledge base completion. Our
goal is di"erent. We want to learn a distance metric to measure the
relatedness of data coming from databases and text.

The entities we want to represent are the union of the sets of
subjects,S, predicates,P, and objectsO of the triples,X = S[P[O.
We want to !nd a vector representation for each entity,f (xi) |xi 2
X. In addition, given a distance function,d(), we want the vector
representation of two related entities,f (xi) and f (xj), to be closer

to each other according tod() than to a third, unrelated vector
f (xk). Finally, our training data consists of related and unrelated
pairs. How can we !nd such vector representationf ()?

Can’t we just use Word Embeddings?. Word embeddings [17,
20] assume that words that appear often together are related to
each other. Using very large text corporaÑwhere words are used
many times in di"erent contextsÑit is possible to learn a vector
representation for each word, and measuring the distance between
word vectors, to determine whether they are similar or not. The
notion of similarity in word embeddings stems from the usage of
words in thesame context, e.g.,handsomeandpretty will be similar
to each other because they are often used together in sentences.
In our setting, we have the advantage of knowing precisely which
entities are related to each other (the pairs): there is no need to
infer this from their appearance together. However, we also have
the disadvantage that entities wonÕt occur many times in many
di"erent contexts. We need to !nd an alternative.

Vector assignment. Our proposal is to frame the assignment of
vectors to entities inX as an optimization problem amenable to
learning, so we can train it e#ciently by feeding the pairs we
have in the training dataset. In particular we want to train a deep
network that, when given two input entities,xi andxj , assigns a
vector to each of them,f (xi) and f (xj), computes their distance
and predicts whether these two entities are close to each other.
Unlike traditional machine learning models built for generalization,
i.e., to predict output for unseen data, we are only truly interested
in the representationf () learned by the network, so we can use it
to encode our data into the embedding. So, how do we trainf ()?

…

…

…

…

…

…

…

…

Input 1Input 2

Loss Layer

[x’1,x’2, x’3… x’n] [x’’1,x’’2, x’’3… x’’n]

d(f(x’),f(x’’))

Figure 3: Architecture of the siamese network

Deepmetric learning. We were inspired by the siamese networks
used in [5] for identifying images of similar faces by using a metric
learned by showing examples of similar faces, a task known as deep
metric learning. We used a network such as the one inFig.3 to learn
a metric for data. Once the network is trained and it has learned
f (), we apply it to each element inX, obtaining the embedding
representation of our data. And with that, we are back into database
territory.

3.2 Re�ning the Embedding
We can use a repertoire of techniques from databases to store, index
and query the embedding e#ciently. We are exploring the best
ways to manage and manipulate the embedding, but in this section
we focus on how we can further improve the embedding quality.

CIDRÕ19, January 2019, Raul Castro Fernandez, Samuel Madden

The learned embedding will contain anomalies: vectors that are
close together but are unrelated. This is because we only use a
limited number of negative samples during training and because of
the curse of dimensionality. If we leave the embedding untouched,
we will produce wrong results when querying it. Next, we explain
the technique we have implemented in the re!nement component
as well as ongoing work:

Curse of dimensionality. Since we are working with a high-
dimensional embedding, we su"er from the curse of dimension-
ality [1]. The worst consequence is the phenomenon known as
hubness, which is the tendency of certain points to be close to many
other points. This means that certain data will be arti!cially related
(close) to a lot of other data, which is directly against the quality
metric we desire for our embedding.

The good news is that we can largely ameliorate this problem.
The main intuition of our technique is that it is possible to compute
a hubness factorfor each entity represented in the embedding,
and then remove entities with a high hubness factor in the top-
k results. In particular, we compute how many times each point
appears close to other points in the embedding. We then take the
75 percentile of the number of appearances as a cuto" parameter.
At query time, we !lter out those entities of the top-k results with a
hubness factor higher than the cuto" parameter and pad the ranking
with additional entities until we have K elements. Empirically, this
improves the quality of the returned rankings.

Ongoing work: TDA. Can we learn more from the data once itÕs
in a vector format? It seems intuitively interesting to understand
the shapes the data forms in the learned embedding, and that may
help us further re!ne the embedding itself. Whether two or more
vectors are relatedÑwhether they have a shapeÑboils down to de-
termining if they are within a speci!c distance,! , of each other.
Then, if they remain close as! grows, it is possible to determine
the strength of the relationship. Using the same intuition, vectors
that do not remain close may be categorized as noise. Topological
data analysis (TDA) is a mathematical tool that permits reasoning
about shapes in high-dimensions algebraically. A central concept in
TDA is persistent homology, which indicates which shapes remain
in the high-dimensional embedding as! changes. A straightfor-
ward application of persistent homology to our embedding gives
us a degree of con!dence for each of the results of the top-k list,
depending on howpersistentthey are in the embedding. We are
currently investigating additional applications of the technique, as
well as how to best use TDA to curate the embedding.

3.3 Termite-Join Operator
Given an input entity,Termite-Joinreturns theK closest entities
in the embedding. All entities representations in the embedding
are computed o%ine by feeding the entities to the learned network
and obtaining their representation.

At query time, given an input queryxi : 1) Obtain the embedding
representation,f (xi) from the collection. 2) Retrieve theK-closest
vectors tof (xi) from the collection. 3) Remove eachki 2 K whose
hubness factor is beyond the cuto" parameter computed by the
re!nement component. 4) Fill in the top-K list if some element has
been removed in step 3. 5) Obtain the string representation of the
top-k vectors and present the results to the user.

4 EARLY EXPERIENCE
We demonstrate now how we have used our proof of concept im-
plementation of Termite to help users identify related data across
heterogeneous schemas and unstructured data (section 4.1). Then,
we show additional results on two microbenchmarks on record
linkage and concept expansion, in 4.2.

Dataset and setup. We built a dataset with information of faculty
at CSAIL. The dataset contains both structured data with di"erent
schemas, e.g., MIT datawarehouse and DBPedia, as well as unstruc-
tured data, e.g., Wikipedia pages, online news articles. We then
used Termite to learn the embedding, using a laptop with 4 cores,
8GB RAM and without access to a GPU. The whole process took
around 1 hour.

4.1 Data Discovery with Termite-Join
We did a user study to evaluateTermite-Join:

Study Goals. The goals of the study were to determine: i) whether
the embedding is an appropriate abstraction to discover data across
structured and unstructured data sources; and ii) whether the se-
mantic distance learned is more appropriate for discovery tasks than
a traditional full-text search interface based on TF-IDF relevance.

To answer these questions, we built two di"erent interfaces to
discover data. One of them,Full-Text-Search (FTS), receives all the
data from the data extractor fromFig.2 and indexes it in elastic-
search [9]. FTShas an API to perform keyword queries and !nd
the matching documents from the system. The second interface,
Termite-Search (TMT)is built on top of the embedding. It is simi-
lar to the !rst in that people can query with keywords, but those
keywords are used as input to theTermite-Joinoperator. Our goal
was to understand which interface was better for a set of discovery
tasks we describe next.

Study Procedure. We recruited 8 users with a CS background and
that are daily users of web search engines. We asked them to solve 3
tasks. The !rst is used as a training exercise, and the remaining two,
(Task 1andTask 2), are part of the experiment. We split the users
in two groups of 4 people each, and showed a di"erent interface to
each group to avoid cross-learning e"ects, i.e., a person learning the
results with one interface and reverse engineering the right query
when using the second interface. We then measured the coverage
of the results obtained by each group and asked for their feedback
on both the questions and the interfaces they used.

We gave each user a 7 minute introduction to the corresponding
interface, along with an example walk-through to illustrate the
process. An experimenter was present at all times with the user,
to clarify questions about the task goal, as well as to suggest ways
of using the API when the user had doubts. We !rst explained the
example task, without telling them it was an example. Users were
asked tocreate a list of forms of recognition (i.e., awards) that have
been given to CSAIL faculty. We asked the users to write their results
in a text !le, and explained that they could make as many search
requests as they needed. We let them use the interface for 5 minutes
(we did not stop them abruptly if they were engaged in preparing a
query) and then moved on to the next two tasks:Task 1: Create a
list of contributions associated with CSAIL faculty; andTask 2: A list
of institutions associated with CSAIL faculty.

Termite: A System for Tunneling Through Heterogeneous Data CIDRÕ19, January 2019,

Table 1: Results from User Study

FTS TMT
(worst,
avg)

Avg.
Time

(worst,
avg)

Avg.
Time

Task 1 1%, 27% 6.1m 100% 4.2m
Task 2 9%, 18% 5.1m 18%, 43% 5.3m

Results. The users ofTMTwere far more successful than the users
of FTSas the results of table 1 demonstrate. The table shows the
percentage of results found by the users when using each interface,
distinguishing between the worst result achieved by any of the 4
users using the same interface and the average one. Remarkably,
for Task 1, the users that usedTMT found a query that led to all
results. In the case ofTask 2, only one user found all of them. We
measured the time the users took to perform each task and found
that users ofTMT took 2 min less on average than users ofFTS.
The times were similar, however, forTask 2.

When we asked the users for the di#culty of the di"erent tasks
they were solving, users ofFTSwere consistent in !ndingTask 1
harder thanTask 2, andTask 2harder than theexampletask. The
users ofTMT mentioned that all three tasks were similarly simple.

Examples. We show example results obtained by users of both
interfaces in table 2 for both tasks. ForTask 1, the users ofTMT
found algorithmic contributions, such asLSH, Zero-knowledge proof
when inserting software artifacts such asVerticaor Postgres, see
the second column of table 2. Users ofFTShad toguesskeywords
that would indicate contributions, and this led naturally to a lower
recall. Similar results were found in the case ofTask 2, in which
users of theFTShad to try di"erent keywords such asuniversity,
degree, while users ofTMT quickly identi!ed that using a known
example, e.g.,Harvardled quickly to many other relevant results.

Conclusion. With TMT, users discover relevant information for
their tasks from both unstructured and structured sources more
e#ciently and easier than with a full-text search index.

4.2 Record Linkage and Concept Expansion
Record Linkage [15] is about !nding syntactically distinct records
that refer to the same real-world entity, e.g.,Samuel R. Maddenand
Sam Madden. Concept Expansion [26] is about obtaining instances
of a given concept, e.g., givenHarvard, obtainMIT,Caltech,Stanford,
etc. Our hypothesis is thatTermite-Joincan help with these tasks.
To understand this empirically, we retrieved ground truth for both
tasks on the same CSAIL faculty dataset mentioned above, and
then implemented functions on Termite to perform each task. We
discuss the results next:

Record Linkage. Our dataset contains 52 faculty members. The
minimum number of representations for each faculty member was
2, the average 4, and the maximum was 7. In total there are 210 dif-
ferent representations for the 52 faculty. To conduct this experiment
we take one representation of each member and use it to query
the embedding with theTermite-Joinoperator. We then measure
how many of the found results are true alternative representations
of the original query. We could identify 77% (163/210) di"erent
representations used to refer to CSAIL faculty.

In particular, the Termite identi!es di"erent spellings of faculty
such asDavid DeWittandDave DeWitt, as well as those that include

middle names, such asDavid J. DeWitt. More important, the embed-
ding helped to identify entities that were not syntactically similar,
such asLiskovandBarbara Jane Huberman. The !rst appears in
the relational data, while the last name only appears in an unstruc-
tured source, but since both representations share relationships and
entities they are placed closed to each other in the embedding.

Concept Expansion. For this experiment we compiled ground
truth following a procedure similar to the one described in [26].
We found instances of the same concept for 10 di"erent concepts,
which are shown in the !rst column of table 3. The concepts had a
number of instances that ranged from 10 to 80. Unlike the original
de!nition of the concept expansion problem [26], which takes both
a concept and an example instance as input, we only provide an
example instance to theTermite-Joinoperator. We then run queries
retrieving lists of di"erent sizes, 2 and 4 times the size of the original
(referred to as 2x Top and 4x Top in the table), and reporting the
total percentage of values in the ranking result that were correct.
The !rst query returns a list of size equal to the number of instances
for the concept. The second and third query subsequently double
the previous size.

Conclusions. The best news is that we obtained these results by
only pointing out Termite to a data repository. No manual domain-
speci!c engineering was necessary.

5 RELATEDWORK
Automatic Knowledge Base Completion. RESCAL [16] models
triples from a knowledge base via the pairwise interactions of latent
features. Similarly, Structured Embeddings and subsequent work [3,
4, 22] learns embeddings for each relation from the triples. These
approaches focus on learning the latent variables that describe the
triples, to later !ll in values of an incomplete knowledge base. In
contrast, Termite learns a metric we use to relate structured and
unstructured data based on their distance in the embedding.

Universal schema. [21, 25] decomposes a matrix in which rows
represent entity pairs and columns represent relations between
entities. Similar to our embedding, they show how to jointly embed
text and knowledge bases. They are not focused on data discovery,
but rather information extraction applications.

Word Embeddings and Relational Data. In [2], the authors pro-
pose a method to learn a vector representation of data items from
relational data based on word embeddings [17], and then use those
vectors to augment traditional SQL queries with so-calledcognitive
capabilities such as !nding elements within a column or row that
are similar to an input data item. We are di"erent in that our embed-
dingÕs goal is to !nd a relatedness metric for discovery applications
beyond only relational data. Our embedding could be applied to
extend SQL queries as well, which is interesting future work.

Other related techniques. There are a myriad of applications in
NLP which share some characteristics with out goal of learning
a good embedding of both structured and unstructured data. We
can bene!t from: i) sequence learning [13, 24], ii) alternative deep
metric methods [14, 23]; iii) alternative embedding methods such
as holographic [19] and hyperbolic embeddings [8]. A recent pa-
per [18] explores deep learning for entity resolution, a common

CIDRÕ19, January 2019, Raul Castro Fernandez, Samuel Madden

Table 2: Example results by users of the study

Task 1: Contributions of CSAIL Faculty Task 2: Associated Organizations of CSAIL Faculty
FTS TMT FTS TMT

arvind co founded company

Robert_Tappan_Morris
Y_Combinator_(company)

stonebraker focused aurora

hari balakrishnan commercializing
research medusa/aurora project

ShorÕs_algorithm, karger algorithm
Chord_(peer-to-peer), haystack project
simultaneous multithreading
Multics, VoltDB, Ingres_(database)
Wait-free, Public-key
Zeroknowledge_proof
RSA_(algorithm)
Alloy_(speci!cation_language)
MOOC
(aprox. 25 more results)

morris delbarton school
dewitt university michigan
morris harvard university
demaine phd university waterloo
meyer phd harvard university

Princeton_University
California_Institute_of_Technology
University_of_Pennsylvania
University_of_California _Berkeley
Stanford_University
Colgate_University
Carnegie_Mellon_University
massachusetts institute technology
La_Sapienza_University_of_Rome
University_of_Michigan
IBM_Almaden_Research_Center
Rice_University, harvard university
(aprox. 10 more results)

Table 3: Results for concept expansion

Concept #
Instances

Found
Top

Found
2x Top

Found
4x Top

known
for 77

27
35%

46
59%

65
84%

faculty
name 52

30
57%

46
88%

51
98%

Institutions 44
26

59%
33

75%
37
84%

birth
place 35

14
40%

18
51%

24
68%

award 33
19

57%
24

72%
28
84%

academic
children 54

41
75%

53
98%

Ñ

�eld 21
13

61%
14

66%
16

76%

nationality 10
10

100%
Ñ Ñ

doctoral
advisor 31

12
38%

16
51%

23
74%

thesis title 19
8

42%
13

68%
16
84%

data integration task. TermiteÕs focus is on leeting users operate on
structured and unstructured data without a high upfront cost.

6 DISCUSSION
Termite helps with discovering related data across heterogeneous
schemas and unstructured sources. While building Termite we iden-
ti!ed several lines of future research. 1) How to build a relational
embedding for data exploration. Exploring data is hard and requires
many di"erent operations, from visualizing datasets to summarize
relations to understand how two schemas are connected to each
other. 2) How to support more applications on the embedding, such
as veri!cation of relational data, !lling values, etc. 3) To !nd better
vector representations of data, where we are currently exploring
new techniques for re!ning the embedding.

We think Termite is the !rst attempt towards a new tool (and a
vector representation of data is a !rst step towards a new abstrac-
tion) for data management. Our vision is geared towards applica-
tions that comprise data beyond relations and use cases beyond
precise relational query processing.

REFERENCES
[1] Charu C. Aggarwal, Alexander Hinneburg, et al. 2001. On the Surprising Behavior

of Distance Metrics in High Dimensional Spaces. InICDT.
[2] Rajesh Bordawekar and Oded Shmueli. 2017. Using Word Embedding to Enable

Semantic Queries in Relational Databases. InDEEM.
[3] Antoine Bordes, Nicolas Usunier, et al. 2013. Translating Embeddings for Model-

ing Multi-relational Data. InNIPS.
[4] Antoine Bordes, Jason Weston, et al. 2011. Learning Structured Embeddings of

Knowledge Bases.. InAAAI.
[5] Jane Bromley, Isabelle Guyon, et al. 1994. Signature veri!cation using a "siamese"

time delay neural network. InNIPS.
[6] Raul Castro Fernandez, Abedjan Ziawasch, et al. 2018. Aurum: A Data Discovery

System. InICDE.
[7] Zhimin Chen, Vivek Narasayya, et al. 2014. Fast Foreign-key Detection in Mi-

crosoft SQL Server PowerPivot for Excel.VLDB(2014).
[8] Bhuwan Dhingra, Christopher Shallue, et al. 2018. Embedding Text in Hyperbolic

Spaces. InTextGraphs-12.
[9] elastic [n. d.]. ElasticSearch. http://www.elastic.com.

[10] J. R. Finkel, Grenager T., and C. Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sampling.ACL(2005).

[11] Angeli Gabor, Johnson Premkumar Melvin, et al. 2015. Leveraging Linguistic
Structure For Open Domain Information Extraction.ACL(2015).

[12] Cunningham H., Bontcheva K., and Maynard D. 2002. GATE: an architecture for
development of robust HLT applications.ACL(2002).

[13] Sepp Hochreiter and JŸrgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput.(1997).

[14] Elad Ho"er and Nir Ailon. 2015. Deep metric learning using triplet network. In
International Workshop on Similarity-Based Pattern Recognition. Springer, 84Ð92.

[15] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. 2006. Record Linkage:
Similarity Measures and Algorithms. InSIGMOD.

[16] Denis Krompa§, Maximilian Nickel, et al. 2013. Non-negative tensor factorization
with rescal. InECML workshop.

[17] Tomas Mikolov, Ilya Sutskever, et al. 2013. Distributed Representations of Words
and Phrases and Their Compositionality. InNIPS.

[18] Sidharth Mudgal, Han Li, et al. 2018. Deep Learning for Entity Matching: A
Design Space Exploration. InSIGMOD.

[19] Maximilian Nickel, Lorenzo Rosasco, et al. 2016. Holographic Embeddings of
Knowledge Graphs. InAAAI.

[20] Je"rey Pennington, Richard Socher, et al. 2014. GloVe: Global Vectors for Word
Representation. InEMNLP.

[21] Sebastian Riedel, Limin Yao, et al. 2013. Relation extraction with matrix factor-
ization and universal schemas. InNAACL-HLT.

[22] Richard Socher, Danqi Chen, et al. 2013. Reasoning with Neural Tensor Networks
for Knowledge Base Completion. InNIPS.

[23] Kihyuk Sohn. 2016. Improved Deep Metric Learning with Multi-class N-pair Loss
Objective. InNIPS.

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. InNIPS.

[25] Patrick Verga and Andrew McCallum. 2016. Row-less Universal Schema.AKBC
(2016).

[26] Chi Wang, Kaushik Chakrabarti, et al. 2015. Concept Expansion Using Web
Tables. InWWW.

