
Demonstration of Ver: View Discovery in the Wild
Kevin Dharmawan∗

kevin.dharmawan@ui.ac.id
University of Indonesia

Depok, Indonesia

Chirag A. Kawediya∗
ckawediya@uchicago.edu
The University of Chicago

Chicago, USA

Yue Gong
yuegong@uchicago.edu

The University of Chicago
Chicago, USA

Zaki Indra Yudhistira
zaki.indra@ui.ac.id

University of Indonesia
Depok, Indonesia

Zhiru Zhu
zhiru@uchicago.edu

The University of Chicago
Chicago, USA

Sainyam Galhotra
sg@cs.cornell.edu
Cornell University

Ithaca, USA

Adila Alfa Krisnadhi
adila@cs.ui.ac.id

University of Indonesia
Depok, Indonesia

Raul Castro Fernandez
raulcf@uchicago.edu

The University of Chicago
Chicago, USA

ABSTRACT

We demonstrate Ver1 [10], a data discovery system that identifies
project-join views over large repositories of tables that do not con-
tain join path information. Ver solves both the technical (scale and
search) and human (semantic ambiguity, navigating a large number
of results) problems of view discovery.

CCS CONCEPTS

• Information systems→ Information integration.

KEYWORDS

Data Discovery, Data Integration, Query-by-Example
ACM Reference Format:

Kevin Dharmawan, Chirag A. Kawediya, Yue Gong, Zaki Indra Yudhis-
tira, Zhiru Zhu, Sainyam Galhotra, Adila Alfa Krisnadhi, and Raul Castro
Fernandez. 2024. Demonstration of Ver: View Discovery in the Wild . In
Companion of the 2024 International Conference on Management of Data

(SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3626246.3654748

1 INTRODUCTION

Large data repositories that originate from different data sources,
such as data lakes [12], open data portals [11], and cloud reposito-
ries [1], offer a wealth of data for machine learning, reporting, and
analytics. However, they also bring a data discovery problem: find-
ing the right combination of datasets for a specific task, especially
when they are spread across different databases. For example, A data
analyst at an e-commerce company may require product data from
an enterprise data lake along with web traffic data from another
database. This vast amount of often incomplete and noisy data,
referred to as pathless table collections in [10], makes data discovery
challenging and hampers the productivity of data analysts.

Many approaches have been developed to identify project-join
views (PJ-views) over pathless table collections. Many data discov-
ery systems [4, 5, 8, 9, 16] find datasets that satisfy certain relevance
∗Both authors contributed equally to this work.
1code is available at https://github.com/TheDataStation/ver

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3654748

criteria. Analysts can first locate relevant datasets using these sys-
tems and then merge those to obtain the final view. There are also
discovery systems [7, 14] utilizing Query-by-Example (QBE) in-
terfaces [18], which enables users to specify examples of the data
they need and identify PJ-views directly. However, pathless table
collections pose unique challenges to existing discovery systems.
When conducting discovery queries on such collections, the re-
sults are frequently ambiguous, including semantically different
results, and varying data versions. This ambiguity complicates the
process of identifying the desired view. To tackle the problem of
view discovery over pathless table collections, we have recently in-
troduced an end-to-end system, Ver that identifies PJ-views among
tens of millions of join paths and effectively navigates users to the
desired result. The full research paper introducing the system is
available [10]. Ver addresses the following challenges:
• Challenge 1. Noisy Queries. Users input queries based on their
current understanding of the data. These inputs may not always
align with the actual data in the table collection and could be
imprecise or include mistakes.

• Challenge 2. Noisy Join Paths. In pathless table collections,
join paths are not specified, making it unfeasible to automatically
determine true join paths. Instead, we focus on detecting inclu-
sion dependencies, which approximate true join paths. Therefore,
join paths can be noisy and erroneous in our scenario.

• Challenge 3. Large Number of Join Paths. Large volumes of
data lead to a large number of join paths. For example, there are
28.6M join paths in an open data repository with∼69K tables [10].

• Challenge 4. Noisy Result Views. When dealing with numer-
ous noisy join paths and ambiguity in a query, there might be
many result views satisfying a user’s query. The results may con-
tain duplicates, views contained in each other, complementary
views, and even views with contradictory values.

• Challenge 5. Result View Navigation. Noisy result views
bring a navigation problem. It is necessary to learn the prefer-
ences of users and guide users to the desired view.
In this paper, we demonstrate how Ver aids users in finding the

desired data in a real-world scenario. We deploy Ver on Chicago
Open Data [13] and showcase its capacity to assist a school coun-
selor in identifying a view related to school information. Ver en-
ables the counselor to specify the data needs via an example query,
searches for relevant views, distills the results, and finally guides
them to the right view by asking a series of data-related questions.

https://doi.org/10.1145/3626246.3654748
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626246.3654748

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Kevin Dharmawan et al.

Related Work. Data discovery systems [2–5, 8] support dataset
search and join discovery to enrich a given dataset. Specifically,
Maco [2] enables users to augment an input dataset with additional
correlated attributes. Auctus [4] is a dataset search engine, support-
ing spatio-temporal filtering and join discovery. However, these
systems do not address the ambiguity and noise in both the query
and the data, as well as the subsequent result navigation problem.

2 SYSTEM OVERVIEW

Ver introduces a reference architecture for view discovery, incorpo-
rating components designed to address both human and technical
aspects of the problem.

View
Specification Discovery Index

Discovery EngineColumn
Selection

View Distillation

Join Graph
Search

View Presentation

Materializer

C1 C2

C3

C4

C5

Technical

Human

Figure 1: Ver Reference Architecture. The funnel shows the

reduction of data as it flows downstream. (Figure from [10])

Discovery Engine and Index Creation (technical). This

component is responsible for building indices for pathless table col-

lections, which includes: i) an index for approximate join paths, and

ii) various retrieval indices that span table names, values, attribute

names, and similarities between columns. All these indices are made

accessible to other modules through the Engine’s API (Challenge 2).
Ver employs Aurum [5] to create the discovery indices. Alter-

native approaches [8, 17] can be integrated. Once these indices
are established, users can then proceed to design and submit their
queries using the View-Specification component.
View Specification (human). Various discovery interfaces,
such as keywords, APIs, natural language, and combinations of
those can be integrated into the View Specification component.
Ver implements Query-By-Example (QBE) interfaces, in which the
user can specify a set of examples to indicate the data they want.

Subsequently, column-selection identifies and selects the sub-
set of tables containing the examples provided by the user.
Column Selection (technical). This component identifies can-

didate tables and columns even in the presence of noisy input queries,

addressing Challenge 1.
Join Graph Search (technical). This component identifies all

join graphs that can merge the candidate tables utilizing the discovery

index that provides the join paths. A join graph yields a PJ-view when

materialized using Materializer component.

Join-Graph-Search generates a large number of candidate views.
Ranking these views is challenging due to variations in users’ search
criteria. To address this, view-distillation reduces the view search
space by summarizing the candidate views.

View Distillation (technical). This component categorizes

candidate PJ-views, identifying view pairs like redundancy, contain-

ment, and potential opportunities for unioning views. Certain cate-

gories can be used to summarize the views (Challenge 4).
view-presentation receives the distilled views and can rank

them. It returns the first-ranked view in a fully automated mode,
or, alternatively, it can utilize the categories computed by view-
distillation to assist users in pinpointing the most relevant data.
View Presentation (human). View-presentation uses a vari-

ety of question interfaces to ask questions about the resulting views,

thereby learning user preferences and knowledge. Through answering

questions, users gain further insights about the resulting views, being

guided to the desired view. (Challenge 5).

After a user submits an example query, Ver utilizes the offline dis-
covery indices to locate relevant datasets that match user-specified
examples, identify join graphs to combine candidate datasets, and
materialize the join graphs to generate candidate views.

Ideally, a query returns one PJ-view. In practice, ambiguity, re-
dundancy, erroneous join paths, and large table repositories can lead
to hundreds of result views. Ver uses two novel components view-
distillation and view-presentation to reduce the view search
space and interactively guide users to the right view. Next, We
give an overview of View-Presentation and View-Distillation.
Please refer to our full paper [10] for more details.

2.1 View Distillation

View-Distillation reduces the view search space by first clas-
sifying candidate views into four categories and then applying a
distillation strategy.
4C Categories. View-Distillation classifies candidate views into
the following 4 categories.
• Compatible view pair: Two candidate views, 𝑉1 and 𝑉2, are
compatible if their sets of rows are identical, (𝑉1 ∩𝑉2) = 𝑉1 = 𝑉2.

• Contained view pair: A view, 𝑉1, is contained by another view,
𝑉2, if and only if 𝑉1 ⊂ 𝑉2.
The categorization of views as either Complementary or Con-

tradictory depends on their candidate keys. In any given view 𝑉 ,
the candidate key, 𝐾 (𝑉), is a set of attributes that uniquely identify
each tuple within 𝑉 .
• Complementary view pair: Two views, 𝑉1 and 𝑉2, are comple-
mentary if they have the same candidate key 𝐾 (𝑉1) = 𝐾 (𝑉2)
and overlapping rows |𝑉1 ∩𝑉2 | > 0, without being contained or
compatible with each other.

• Contradictory view pair: Two views𝑉1 and𝑉2 are contradictory
when they share a candidate key 𝐾 (𝑉1) = 𝐾 (𝑉2), but there exists
a same key value that leads to different rows in each view.
View-Distillation efficiently classifies views into 4C categories

by i) using the transitivity property to not compare any pair of views
whose categorization can be inferred from prior comparisons; ii)
creating row-level hashes to find compatible and contained views
efficiently; iii) utilizing an inverted index that maps each key value
to their rows to accelerate the detection of complementary and
contradictory views.
Distillation Strategy. View-Distillation implements the fol-
lowing distillation strategy: i) deduplicate compatible views, ii)

Demonstration of Ver: View Discovery in the Wild SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

retain the largest contained view, iii) union complementary views.
Alternative strategies can be applied for specific use cases. Ver
implements this strategy to help reduce view search space that
View-Presentation needs to consider.

Complementary and contradictory view pairs are useful signals
for users to prune noisy views and steer towards the correct view.
These view pairs are subsequently passed to View-Presentation
to generate data questions.

2.2 View Presentation

view-presentation analyzes the views and generates questions
that aid in ranking and selecting the most relevant views. For in-
stance, it might ask a user about their preference between "home
address" and "work address" if it identifies both in the views. By
answering these questions, users gain a better understanding of the
available schemas and datasets, enabling them to fine-tune their
preferences and exploration requirements.
Question Interface. To capture users’ diverse preferences effec-
tively, Ver designs the following question interfaces:
• Dataset interface: This interface shows a view to a user and
asks them if it is their desired view.
• Attribute interface: This interface shows a user an attribute
and asks whether it should be included in the intended output.
• Dataset Pair: This interface displays a pair of views to users,
prompting them to choose one. It is specially designed to utilize
the 4C categorization of views (Section 2.1).
• Summary interface: This interface displays a summary for a
set of views (e.g., a word cloud), and asks a user if it is relevant for
the desired output.

View-Presentation has two choices to make at each iteration: i)
what question interface to choose; ii) how to prioritize questions to
show on the chosen interface. For example, if the dataset interface
is chosen, then it could show a candidate view that is most relevant
to the input example query, or a view with the highest data quality.
Ver implements two strategies to prioritize questions: i) semantic
distance of the question from the input example query; ii) semantic
distance of dataset schema to input query. Ver supports other inter-
face designs and strategies for prioritizing questions. Additionally,
users can always skip questions and Ver adapts to their responses.
Bandit-Based View Presentation Algorithm. To effectively nav-
igate users to the desired view, View-Presentation needs to ask
questions that i) narrow down view choice space and ii) users are
capable of answering. Naive approaches that rely solely on a user’s
initial preference for a question interface and then continue to ask
questions based on this chosen interface may not adapt well to
changes in the user’s knowledge and preferences.

To address this challenge, View-Presentation employs a multi-
arm bandit algorithm to model users’ evolving preferences. In the
algorithm, each question interface represents an arm, and answer-
ing a question is pulling an arm. The reward of a question is its
information gain, defined as the maximum number of views that
can be pruned after answering it. It also uses a parameter to balance
the choice of interface with the most information gain (exploita-
tion) and explore a random question interface (exploration) at each
iteration. In summary, View-Presentation achieves a balance be-
tween choosing questions that users are capable of answering and

questions that prune many irrelevant views, by adaptively learning
and accommodating users’ preferences.
Ranking Views. View-Presentation keeps all views unless ex-
plicitly discarded by a user, allowing users the flexibility to revisit
their selections as their knowledge evolves. It ranks the views ac-
cording to their capacity to fulfill users’ answered questions. More
concretely, The score of a view is calculated as a weighted sum of
the view’s utility for each question.

3 DEMONSTRATION

To demonstrate how Ver aids users in finding the desired view, we
design a real-world scenario: Anna is a school counselor in Chicago
and she wants to help parents and students choose which schools
to attend. The data she needs is a table that contains information
about every public school in Chicago, including the school name,
its curriculum/degree type (ex: IB, General Education, etc), and
its latest rating based on Chicago’s School Quality Rating Policy
(SQRP) [6] as shown in Table 1.

School Name Type Level
Ogden Intl. High School IB Level 1
Hyde Park High School General Education Level 2

...
Table 1: The Desired View of Anna

Anna has explored several methods to collect data, but none met
her needs: i) She checked the Chicago Public Schools (CPS) web-
site for school-specific information, but manually reviewing each
school was too time-consuming; ii) She searched the Chicago open
data portal for "schools" datasets. Despite finding over a hundred
datasets, none individually contained all the needed information;
iii) Anna also consulted ChatGPT, which cannot provide a complete,
real-time table, and suggested the same CPS website approach she
had already tried. Next, we describe how Ver addresses Anna’s
problem, as illustrated in Fig 2.
Index Creation (Offline). Ver first builds a data discovery index
over Chicago Open Data during the offline stage (before the demo
starts). The retrieval index over table names, values, and attribute
names is implemented in DuckDB [15]. The join path index is built
using Aurum [5].
Step 1: View Specification. Anna knows the information about
a few schools in Chicago. For example, Ogden International High

School has the type IB and the rating Level 1; Hyde Park High School

has the type General Education and the rating of Level 2. She would
like the final view to include these examples. The QBE interface
of View-Specification enables Anna to specify the example data
to illustrate the view she desires. As shown in Fig. 2, Anna inputs
descriptive column names and a few example rows to specify the
view she wants. She can use the buttons above the table to adjust
the shape of the example table and click "Find Views" to let the
system search for views according to the specified examples.
Step 2: Generating Candidate Views. Ver then searches for can-
didate columns that match the specification using its discovery
index, searches all join graphs to combine candidate columns, and
finally materializes all candidate graphs to generate the views for

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Kevin Dharmawan et al.

View Presentation

Generated 382 Views

Join Graph Search and Materialization

View Distillation

Deduplicate
compatible views

247 Views

Keep the largest
contained view

195 Views

382 Views

View Specification 1

2

3
Initial

4

(a) Attribute Interface

(c) Dataset Pair Interface

(b) Dataset Interface

(d) Summary Interface

Figure 2: Ver Interface in Jupyter Notebook. Left (1-3): Specify example queries, search for join graphs, generate and distill

views; Right (4): View Presentation Question Interfaces.

the user. Ver generates 382 views for Anna’s example query. She
can browse each generated view using Ver’s API.
Step 3: View Distillation. Manually examining 382 views is
laborious for Anna. Ver uses View-Distillation to reduce the view
search space. It deduplicates compatible views, keeps the largest
view for contained views, and unions complementary views. After
that, there are 195 views left.
Step 4: View Presentation. As the number of remaining views
is still too large for Anna to manually go through, View Presen-
tation analyzes the views and generates questions that when an-
swered, help rank and select views, effectively navigating Anna to
the desired view. View Presentation provides Anna with 4 ques-
tion interfaces: Fig 2a is an Attribute interface, in which Anna is
asked whether a specific attribute (in this case, rating_statement)
should be present in the view, Fig. 2b shows the Dataset interface, in
which Anna is shown a candidate view and asked if it satisfies her
requirements or whether it should be eliminated, Fig. 2c displays
the Dataset Pair interface, in which Anna can choose between two
contradictory views and choose which one aligns with her require-
ments, and Fig. 2d shows the Summary interface, in which Anna is
shown a word cloud of attributes in the data to determine whether
it contains the data relevant to her needs. Anna can always skip
any question by choosing "Does not matter" and Ver adapts to the
responses. The user can also stop at any time and check the current
ranking of views by clicking "Show Shortlist" button.

Finally, the counselor, Anna, finds the desired view have a high
rank in the view list, and obtain the school information she needs.
Interactivity. During the demonstration, we will walk participants
through Anna’s use case. In the view specification phase, they can
formulate example queries using the QBE interface. Following this,
they can explore the join graphs generated by Ver and browse the
candidate views. This process will help them grasp the impact of
noisy join paths. Lastly, they can engage with View Presentation
to answer data questions and narrow the scope of views. This step

will allow participants to understand how View Presentation
mitigates noise in the data and disambiguates result views. We will
prepare Chicago Open Data [13] and 5 example queries for users
to explore.

REFERENCES

[1] M. Armbrust and et al. 2021. Lakehouse: A New Generation of Open Platforms
that Unify Data Warehousing and Advanced Analytics. In CIDR ’21.

[2] J. Becktepe, M. Esmailoghli, M. Koch, and Z. Abedjan. 2023. Demonstrating
MATE and COCOA for Data Discovery. In SIGMOD ’23. 119–122.

[3] A. Bogatu, A. A. A. Fernandes, N. W. Paton, and N. Konstantinou. 2020. Dataset
Discovery in Data Lakes. In ICDE ’20. IEEE, 709–720.

[4] S. Castelo and et al. 2021. Auctus: a dataset search engine for data discovery and
augmentation. Proc. VLDB Endow. 14, 12 (jul 2021), 2791–2794.

[5] R. Castro Fernandez and et al. 2018. Aurum: A Data Discovery System. In ICDE

’18. IEEE, 1001–1012.
[6] Chicago Public Schools. 2023. School Quality Rating Policy (SQRP). https:

//www.cps.edu/about/district-data/metrics/sqrp/. Accessed on April 12, 2024.
[7] A. Fariha and et al. 2018. SQuID: Semantic Similarity-Aware Query Intent Dis-

covery. In SIGMOD ’18. 1745–1748.
[8] R. C. Fernandez and et al. 2019. Lazo: A cardinality-based method for coupled

estimation of jaccard similarity and containment. In ICDE ’19. 1190–1201.
[9] S. Galhotra, Y. Gong, and R. Fernandez. 2023. Metam: Goal-Oriented Data Dis-

covery. In ICDE. IEEE Computer Society, 2780–2793.
[10] Y. Gong, Z. Zhu, S. Galhotra, and R. C. Fernandez. 2023. Ver: View discovery in

the wild. In ICDE ’23. IEEE, IEEE, 503–516.
[11] N. Huijboom and T Van den Broek. 2011. Open data: an international comparison

of strategies. European journal of ePractice 12, 1 (2011), 4–16.
[12] F. Nargesian and et al. 2019. Data lake management: challenges and opportunities.

Proc. VLDB Endow. 12, 12 (aug 2019), 1986–1989.
[13] Chicago Data Portal. 2024. Chicago Data Portal. Retrieved January 12, 2024 from

https://data.cityofchicago.org
[14] F. Psallidas and et al. 2015. S4: Top-k Spreadsheet-Style Search for Query Discov-

ery. In SIGMOD ’15. 2001–2016.
[15] M. Raasveldt and H. Mühleisen. 2019. DuckDB: An Embeddable Analytical

Database. In SIGMOD ’19. ACM, 1981–1984.
[16] Y. Zhang and Z. G. Ives. 2019. Juneau: data lake management for Jupyter. Proc.

VLDB Endow. 12, 12 (aug 2019), 1902–1905.
[17] D. Zhu and et al. 2019. Josie: Overlap set similarity search for finding joinable

tables in data lakes. In SIGMOD ’19. 847–864.
[18] M. M. Zloof. 1975. Query by example. In AFIPS ’75. ACM, 431–438.

https://www.cps.edu/about/district-data/metrics/sqrp/
https://www.cps.edu/about/district-data/metrics/sqrp/
https://data.cityofchicago.org

	Abstract
	1 Introduction
	2 System Overview
	2.1 View Distillation
	2.2 View Presentation

	3 Demonstration
	References

