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ABSTRACT

As users migrate their analytical workloads to cloud databases, it is

becoming just as important to reduce monetary costs as it is to op-

timize query runtime. In the cloud, a query is billed based on either

its compute time or the amount of data it processes. We observe that

analytical queries are either compute- or IO-bound and each query

type executes cheaper in a different pricing model. We exploit this

opportunity and propose methods to build cheaper execution plans

across pricing models that complete within user-defined runtime

constraints. We implement these methods and produce execution

plans spanning multiple pricing models that reduce the monetary

cost for workloads by as much as 56%. We reduce individual query

costs by as much as 90%. The prices chosen by cloud vendors for

cloud services also impact savings opportunities. To study this ef-

fect, we simulate our proposed methods with different cloud prices

and observe that multi-cloud savings are robust to changes in cloud

vendor prices. These results indicate the massive opportunity to

save money by executing workloads across multiple pricing models.

1 INTRODUCTION

As analytic workloads migrate to cloud data warehouses, users

care just as much about saving money as they do about optimizing

workload runtime. Even modest savings on one workload become

significant over time if the workload runs repeatedly. For example,

saving $140 on an analytics workload that runs twice a day to update

recommendations will save $100,000 a year, and organizations may

have many such workloads that power different applications such

as filling dashboards to visualize complex data patterns or managing

ETL pipelines [27, 35, 37, 49, 63, 66, 71].

While cloud providers offer many tools to tune database per-

formance, there are no mechanisms to directly save money. Thus,

users are increasingly employing setup-specific solutions to save

costs such as working with consulting groups like McKinsey, the

DuckBill group, or CloudZero [24, 50, 67] to tune databases, turn

off unused resources, and optimally utilize allocated resources.

In this paper, we identify opportunities to reduce the monetary

cost of running analytical workloads in the cloud. The key insight is

simple. Queries consume IO and CPU; but cloud databases’ pricing

models charge for IO or CPU time, to keep pricing simple. This

opens an opportunity to save money by cleverly scheduling queries

in a cloud database with a favorable pricing model.

The two most prominent pricing models for cloud databases are

pay-per-compute and pay-per-byte. In a pay-per-compute model the

user pays for computation time, e.g., in AWS Redshift [6], while in

pay-per-byte the user pays for the amount of data scanned irrespec-

tive of compute time, e.g., in Google BigQuery [14].

CPU-bound queries execute cheaper in pay-per-bytemodels, vice

versa for IO-bound queries. Figure 1 plots query runtime (hours) on

the 𝑥 axis and the amount of data scanned (terabytes) on the 𝑦 axis.

We consider one cloud database charging $6.25/TB (pay-per-byte)
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Figure 1: Size scanned (TB) vs. runtime (hours). Boundary for

$6.25/TB (pay-per-byte) vs. $1/hour (pay-per-compute).

and one charging $1/hour (pay-per-compute). Queries on the blue

line cost the same in both databases, e.g. one that runs for 6.25

hours and scans 1TB. Query A runs fast but reads 1.9TB (e.g., a

simple scan query). It costs less in the pay-per-compute database,
so it is above the line. Query B scans 0.5TB but runs slower (e.g.,

window operations), so it costs less in the pay-per-byte database.
Running each query in the pricing model most beneficial for it is

cheaper than running both queries in a single cloud database.

All workloads have runtime constraints, even if they are loose.

For example, a user with a nightly workload that usually finishes

by 2 am may prefer to delay the completion time up to 8am if they

can save money [18]. This distills the problem we explore in this

paper: given an analytical workload (a set of queries and data) and a

workload runtime constraint, we propose two algorithms to exploit

money saving opportunities that arise from the observations above:

• O1: Inter-Query Algorithm. We propose an algorithm that

takes a set of queries, data, a workload runtime constraint, and a

set of cloud databases and identifies which queries should execute

in which databases to save money within the runtime constraint.

• O2: Intra-Query Algorithm. We propose an algorithm that,

given a single query, a query runtime constraint, and a set of

target cloud databases finds subqueries to execute in each cloud

database to reduce query cost within the runtime constraint.

Where these complementary techniques are best applied is work-

load dependent, e.g., a workload with 3 expensive queries may

benefit more from O2 than O1, so we consider each in isolation.

However, bothO1 andO2 require moving data, ensuring cloud data-

base SQL syntax compatibility, and, more importantly, managing

the costs of data movement. To exploit O1 and O2 without modify-

ing user setups, we implement middleware called Arachne between
users and the cloud that takes a workload and runtime constraint,

executes O1–O2, migrates data, and yields cheaper execution plans

when these exist under the runtime constraint.

We use Arachne to study the impact of O1–O2 on workload

costs under runtime constraints. We build execution plans across

Amazon Redshift (pay-per-compute) [6] and Google BigQuery (pay-

per-byte) [14] to evaluate Arachne, and we carefully configure these
systems to the best of our ability [16, 19, 59, 61].



Our results show that there are massive opportunities for saving

money. We achieve up to 57% savings (we run workloads for $104

while the original cost $243) with an inter-query plan across pricing

models that has a nearly 10 hour slowdown. On another workload,

an inter-query plan saves 55% with a 3-hour speedup. We also

achieve up to 90% savings on a query via an intra-query plan.

We simulate varying cloud prices and study multi-cloud savings

and runtime-cost tradeoffs as prices change. We see that savings are

robust to price changes and that varying egress fees–what cloud

vendors charge to move data out of a cloud–can aid or fully prevent

data movement. In summary, the contributions of this paper are:

• We observe cost saving opportunities for analytical workloads

by exploiting different cloud pricing models.

• We design two algorithms to exploit those opportunities.

• We implement the algorithms on a system called Arachne, to
realize savings for real workloads.

• We evaluate Arachne (and the algorithms it implements) using

prominent cloud databases and provide a simulation to shed light

on the impact of market prices on saving opportunities.

Next, Section 2 presents background and the cost saving opportu-

nity. Sections 3 and 4 present the inter- and intra-query algorithms

to exploit O1 and O2, and Section 5 presents Arachne. We evalu-

ate savings opportunities in Section 6 and present related work in

Section 7 and conclusions in Section 8.

2 BACKGROUND AND OPPORTUNITIES

We provide background on analytical workloads in the cloud in

Section 2.1, characterize the savings opportunity in Section 2.2, and

present the problem statement in Section 2.3.

2.1 Executing Analytics Workloads in the Cloud

2.1.1 Cloud Data Warehouses and Pricing Models. We differentiate

infrastructure-as-a-service (IaaS) from platform-as-a-service (PaaS)
and within PaaS, we separate pay-per-compute from pay-per-byte.

IaaS vs PaaS. In IaaS, OLAP databases (e.g., Trino [60] or Apache

Hive [68]) are manually deployed and maintained on virtual ma-

chines and billed by compute time. In contrast, PaaS (e.g., Google

BigQuery [14], AWS Redshift [6], Microsoft Azure Synapse [10], or

Snowflake [25]) deploy and maintain databases for users to directly

use. PaaS charges more than IaaS for these services.

Pay-per-compute vs Pay-per-byte. Two of the most common

PaaS pricing models are pay-per-compute, which charges for the

amount and duration of computing resources, and pay-per-byte,
which charges for the bytes read by a query regardless of runtime.

2.1.2 Breakdown of Cloud Costs. Loading data into a cloud data-

base and executing a workload incurs the following costs:

• Blob Storage cost: Most cloud databases access data from blob

storage (e.g., AWS S3), and storing data there has a cost (see

Table 1). In S3 (us-east) it costs $23/month to store 1TB of data.

• Read/Write cost: Blob storage systems charge for API calls, e.g.,

read/write calls to store and retrieve data from blob storage. For

instance, it costs $0.05 to perform 10,000 write operations in S3.

• Loading cost: While data is loaded into a machine, such a ma-

chine must be operative and thus consuming compute resources.

Table 1: Prices for pay-per-compute (PPC), pay-per-byte

(PPB), storage, and egress. Systems in evaluation are bolded.

Pricing Model Database Cost

PPC Amazon Redshift–ra3.xlplus $1.086/hr

PPC Amazon Redshift–ra3.4xlarge $3.26/hr

PPC Azure Synapse 100 DWU $1.20/hr

PPC Azure Synapse 500 DWU $6/hr

PPC Snowflake Small (AWS US-East) $4/hr

PPC n2-standard-32 VM (GCP) $1.55/hr

PPC/PPB Amazon Redshift Spectrum RS + $5/TB

PPB Google BigQuery $6.25/TB

PPB Amazon Athena $5/TB

PPB Azure Synapse Serverless $5/TB

Cloud Vendor Storage Writes Reads Egress

GCP (us-east1) $0.023/GB-mo $0.05/10k ops $0.004/10k ops $120/TB

S3 (us-east) $0.023/GB-mo $0.05/10k ops $0.004/10k ops $90/TB

Azure $0.018/GB-mo $0.065/10k ops $0.005/10k ops $87/TB

• Egress cost: Transferring data out of a cloud or between regions

incurs per-byte charges. A 1TB transfer from GCP costs $120.

• Query Processing cost: Query execution can be billed per-byte

or per-compute. BigQuery charges $6.25/TB scanned.

Running an analytics workload in the cloud involves four steps.

In Step 1, data is collected from sources (e.g., on-premise repos-

itories, sensors) and moved to the cloud, incurring data transfer

and storage costs. In Step 2, data is loaded into a cloud database in-

curring read/write and loading costs. Moving data between clouds

exacerbates these costs, so our algorithms account for this poten-

tial cost increase. In Step 3, users pay to execute queries against

the data in the cloud database. Finally, in Step 4 query results are

returned to users to use in downstream tasks, e.g., reporting, filling

dashboards [15, 29], potentially incurring egress costs. While all

four steps incur costs, costs for Steps 1 and 4 depend on the input

and output data, which are mostly fixed for a given workload. We

concentrate on Steps 2 and 3 which involve cloud databases and

dominate the total cost. We specifically focus on reducing the cost

of Step 3 and, to the extent that data movement is needed, Step 2.

2.2 Cost Saving Opportunity and Challenges

Wenow exploit the insight thatmigrating CPU- or IO-bound queries

or subqueries to an analytical systemwith a beneficial pricingmodel

presents an cost saving opportunity.

Given the size scanned by a query (𝑆), query runtime (𝑅), per-

byte cost (𝛼𝑆 ), and per-compute cost (𝛼𝑅 ), we observe that 𝛼𝑆 ×𝑆 =

𝛼𝑅 × 𝑅 =⇒ 𝑆 =
𝛼𝑅
𝛼𝑆

× 𝑅. So a query that runs for 𝑅 seconds costs

the same in pay-per-compute as one that reads
𝛼𝑅
𝛼𝑆

× 𝑅 bytes in

pay-per-byte. This equation represents the blue line in Figure 1 that

delineates the most beneficial pricing model for a query.

Arachne needs query runtimes to exploit savings opportunities

within runtime constraints. Unfortunately, there are few accurate

approaches to estimating query runtime (𝑅) Instead, Arachne col-

lects query runtime via a profiling stage described in Section 5.2.

Adapting to Cloud Vendor Pricing. This analysis only requires

query cost and runtime, so Arachne can support other pricing mod-

els. For tiered pricing models–such as egress where in AWS the first

2



10TB/month cost $90/TB and the next 40TB/month cost $85/TB–

Arachne can track usage and adjust pricing constants accordingly.

Arachne must also track cloud price changes to keep its analysis

accurate, as users do today. However, pricing changes happen rarely

and are announced well in advance. Google announced a recent

BigQuery price increase 3 months in advance [17] while Redshift

pricing for current generation hardware has not changed for years.

2.3 Problem Statement and Approach

We now formally present the goal of this work. Given a workload

of queries 𝑄 and tables 𝑇 that execute on a source execution back-

end 𝑋𝑠 under a runtime constraint, we consider a set of execution

backends (each of which may offer a different pricing model) and

find inter- and intra-query plans (O1–O2) that save money within

the runtime constraint. Users choose which algorithms to run on

their workload, as O1 and O2 do not need to be deployed together.

Approach. To solve the problem statement, we build a proof-of-

concept, Arachne, which implements the inter- and intra-query al-

gorithms and shows empirically that it is possible to save money on

analytical workloads by scheduling queries and subqueries across

clouds. Arachne does not require modifications to existing setups,

e.g., where data is stored, and it handles all needed data movement.

Arachne relies on an offline profiling stage to gather query plans,

runtimes, and costs to save money and meet runtime constraints.

We note that these algorithms can only honor runtime cons-

traints up to the accuracy of the profiles, e.g., if cloud databases

dramatically vary a query’s runtime between iterations, the algo-

rithms cannot compute accurate runtime or cost estimates for plans.

We discuss this further with profiling in Section 5.2.

3 INTER-QUERY EXECUTION PLAN

We now present the inter-query algorithm to exploit O1. We dis-

cuss the setup (Section 3.1) and algorithm intuition (Section 3.2.1),

present the algorithm (Section 3.2.2), and compare it to an optimal

inter-query algorithm (Section 3.2.3) to understand its quality.

3.1 Algorithmic Setup and Goal

We consider an analytics workload with a set of tables 𝑇 , queries

𝑄 , and a workload runtime constraint. We assume that initially a

user employs a source execution backend 𝑋𝑠 , paying storage costs
for 𝑇 in 𝑋𝑠 , and paying execution costs for 𝑄 in 𝑋𝑠 .

Given a second execution backend, 𝑋𝑑 , the algorithm chooses

a subset of queries𝑊 ⊆ 𝑄 to execute in 𝑋𝑑 such that the overall

workload costs are reducedwithout breaking the runtime constraint.

To run a query in 𝑋𝑑 , all tables that the query scans must migrate

from 𝑋𝑠 to 𝑋𝑑 , so the algorithm must account for migration costs.

The algorithm requires the following inputs:

• The set of tables 𝑇 and queries 𝑄 in the workload.

• 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸 is an optional workload runtime constraint.

• The source 𝑋𝑠 and destination 𝑋𝑑 execution backends e.g., AWS

Redshift or Google BigQuery.

• A set of cloud prices P = (𝑝𝑏𝑙𝑜𝑏 , 𝑝𝑟𝑒𝑎𝑑 , 𝑝𝑤𝑟𝑖𝑡𝑒 , 𝑝𝑠𝑒𝑐 , 𝑝𝑏𝑦𝑡𝑒 ). 𝑝𝑏𝑙𝑜𝑏
per-byte for blob storage, 𝑝𝑟𝑒𝑎𝑑 read and 𝑝𝑤𝑟𝑖𝑡𝑒 write cost, and

execution backend costs 𝑝𝑠𝑒𝑐 for per-compute pricing models

and 𝑝𝑏𝑦𝑡𝑒 for per-byte pricing models (example prices in Table 1)

• The egress cost 𝑒 to move from 𝑋𝑠 to 𝑋𝑑 e.g., $90/TB out of AWS.

• A function 𝑠 which returns the size of a given table. This is

measured via cloud storage APIs and is defined for the sake of

notation.

• Functions 𝐶𝑋𝑖
and 𝑅𝑋𝑖

which take a query 𝑞 and return the cost

and runtime respectively of 𝑞 in an execution backend 𝑋𝑖 .

All the above inputs are easy to obtain except for 𝐶𝑋𝑖
and 𝑅𝑋𝑖

,

which are obtained during a profiling stage, explained in Section 5.

We now formalize the algorithm’s goal.

Considering the Problem as a Bipartite Graph. We construct a

bipartite graph𝐺 = (𝑇,𝑄, 𝐸), with tables𝑇 and queries𝑄 . We draw

an edge (𝑡 ∈ 𝑇, 𝑞 ∈ 𝑄) ∈ 𝐸 if query 𝑞 scans base table 𝑡 .

We next assign weights 𝜎𝑞 to each query 𝑞 ∈ 𝑄 and `𝑡 for each

table 𝑡 ∈ 𝑇 . 𝜎𝑞 represents the query savings achieved by moving

query 𝑞 to the other execution backend, i.e.,

𝜎𝑞 = 𝐶𝑋𝑑
(𝑞) −𝐶𝑋𝑠

(𝑞) (1)

`𝑡 represents the migration costs for a table, which is the cost of

moving 𝑡 from 𝑋𝑠 to 𝑋𝑑 , loading 𝑡 into 𝑋𝑑 , reading and writing 𝑡

from blob storage, and temporarily storing 𝑡 in blob storage. If each

table requires 𝐾 read/write operations, we can express `𝑡 as:

`𝑡 = 𝑒 × 𝑠 (𝑡) + (𝑝𝑟𝑒𝑎𝑑 + 𝑝𝑤𝑟𝑖𝑡𝑒 ) × (𝑠 (𝑡)/𝐾) + 𝑝𝑏𝑙𝑜𝑏 × 𝑠 (𝑡) (2)

In Figure 2 we show an example of this model with three tables

𝑇 = {𝑡1, 𝑡2, 𝑡3} and three queries𝑄 = {𝑞1, 𝑞2, 𝑞3}. We draw edges to

represent query dependencies e.g., 𝑞3 scans tables 𝑡2, 𝑡3.

The algorithm’s goal is to find a subset of tables that maximizes

query savings. Concretely, for 𝑆 ⊆ 𝑇 let 𝑁 (𝑆) be the set of queries
scanning tables in 𝑆 and let 𝑁 −1 (𝑞 ∈ 𝑄) be the set of tables 𝑞 scans.
Our goal is to find 𝑆\ in Equation 3. For example, in Figure 2 we

move tables 𝑡2, 𝑡3 and queries 𝑞2, 𝑞3 to 𝑋𝑑 , saving (3+4)-(2+4)=$1.

𝑆\ = argmax

𝑆⊂𝑇

∑︂
𝑞∈𝑁 (𝑆 )

𝜎𝑞 −
∑︂
𝑠∈𝑆

`𝑠 (3)

3.2 Inter-Query Algorithm

Now we provide the intuition for our greedy strategy to exploit O1

(Section 3.2.1), and present the inter-query algorithm (Section 3.2.2).

Finally, we assess the quality of the greedy algorithm by comparing

it to an optimal (but much slower) min-cut algorithm (Section 3.2.3).

3.2.1 Intuition for the Greedy Strategy. At each iteration, the greedy
algorithm computes themaximum savings achievable (upper bound)

by moving queries depending on 𝑡 to 𝑋𝑑 for each table 𝑡 . It removes

the table with the least upper bound and records the cost and run-

time of the resulting inter-query plan. When no tables remain, it

chooses the cheapest plan with runtime under the runtime bound.

Concretely, we define 𝑣𝑡 = (∑︁𝑞∈𝑁 (𝑡 ) 𝜎𝑞) − `𝑡 as the sum of

query savings for all queries that scan 𝑡 minus the migration cost of
𝑡 . As an upper bound on savings, if 𝑣𝑡 < 0 it will never be beneficial
to move 𝑡 to the destination backend, so we remove nodes for 𝑡 and

all queries scanning 𝑡 from the bipartite graph.

Analogously, we define a lower bound on savings generated from

a single query, 𝑣𝑞 , as query savings of 𝑞 minus the migration costs
of the tables that 𝑞 requires, or 𝑣𝑞 = 𝜎𝑞 −

∑︁
𝑡 ∈𝑁 −1 (𝑞) `𝑡 . As a lower

bound on possible savings for 𝑞, if 𝑣𝑞 > 0 it is strictly beneficial

to move 𝑞 to 𝑋𝑑 . To represent this we add 𝑞 and 𝑁 −1 (𝑞) to the
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Figure 2: Bipartite model. Node top is query savings 𝜎𝑞 or

migration cost `𝑡 . Node bottom is upper bound 𝑣𝑡 or lower

bound 𝑣𝑞 . We show how this value is calculated for 𝑡3 and 𝑞2.

final set of queries and tables to move to 𝑋𝑑 , we remove the nodes

representing 𝑞 and all 𝑡 ∈ 𝑁 −1 (𝑞) from the bipartite graph, and

remove all outbound edges from 𝑁 −1 (𝑞). In Figure 2 we compute

𝑣𝑡 and 𝑣𝑞 and present them in the lower half of each node, e.g., 𝑣𝑡2
is the savings of 𝑞1 and 𝑞3 minus the cost of 𝑡2, or 3 + 4 − 2 = 5.

Algorithm Example. In Figure 3 the algorithm considers three

plans for the given workload. The first plan (left) migrates all tables

and queries, saving $65 but violating the runtime constraint, so

runtime is colored red. Removing 𝑡3 yields the second plan (middle),

saving $40 and running in 2.5 hours, so both savings and runtime

are colored green. Finally, removing 𝑡1 yields the baseline (right)

which saves no money. The second plan is chosen as it saves the

most money under the runtime constraint, so it is colored green.

1 Function InterQuery({𝑋𝑠 , 𝑋𝑑 }, prices P, 𝑒 ,𝑇 ,𝑄 , 𝑠 ,𝐶 , 𝑅, 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸):
2 𝑇 ′,𝑄 ′,𝑇𝑓 ,𝑄 𝑓 = ReducePlan(X, P, e, T, Q, s, C) ;

3 Remove all outbound edges from𝑇𝑓 ;

4 while 𝑇 ′ ≠ ∅ do

5 For 𝑡 ∈ 𝑇 ′
, 𝑣𝑡 = (∑︁𝑞∈𝑁 (𝑡 ) 𝜎𝑞 ) − `𝑡 ;

6 𝑡 ′ ∈ 𝑇 ′
be the table with minimium 𝑣𝑡 ′ ;

7 𝑇 ′ = 𝑇 ′ − {𝑡 ′ };𝑄 ′ = {𝑞 |𝑁 −1 (𝑞) ⊂ 𝑇 ′ } ;
8 𝑇 ′,𝑄 ′,𝑇 ′

𝑓
,𝑄 ′

𝑓
= 𝑅𝑒𝑑𝑢𝑐𝑒𝑃𝑙𝑎𝑛 (𝑋, 𝑒,𝑇 ′,𝑄 ′, 𝑠, 𝑓 ) ;

9 𝑇 ′ = 𝑇 ′ ∪𝑇 ′
𝑓
;𝑄 ′ = 𝑄 ′ ∪𝑄 ′

𝑓
;

10 planCosts[𝑇 ′,𝑄 ′
] = ⟨cost(𝑇 ′,𝑄 ′

), runtime(𝑇 ′,𝑄 ′
)⟩ ;

11 Return the min cost plan in planCosts within 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸 ;

12 Function ReducePlan(𝑋 , P, 𝑒 ,𝑇 ′ ,𝑄 ′ , 𝑠 ,𝐶):
13 𝑄 ′ = {𝑞 |𝜎𝑞 > 0} ;𝑇𝑓 ,𝑄 𝑓 = {}, {} ;
14 For 𝑡 ∈ 𝑇 ′ 𝑣𝑡 = (∑︁𝑞∈𝑁 (𝑡 ) 𝜎𝑞 ) − `𝑡 ;

15 For 𝑞 ∈ 𝑄 ′ 𝑣𝑞 = 𝜎𝑞 − ∑︁
𝑡 ∈𝑁 −1 (𝑞) `𝑡 ;

16 while 𝑇 ′ ≠ ∅ ∧ ∃𝑣𝑡 < 0 ∧ ∃𝑣𝑞 > 0 do

17 𝑈 = {𝑡 |𝑣𝑡 < 0};𝑉 = {𝑞 |𝑣𝑞 > 0} ;
18 𝑇 ′ = 𝑇 ′ −𝑈 ;𝑄 ′ = 𝑄 ′ − {𝑞 |𝑞 ∈ 𝑁 (𝑡 )∀𝑡 ∈ 𝑈 } ;
19 𝑇 ′ = 𝑇 ′ − {𝑡 |𝑡 ∈ 𝑁 −1 (𝑞)∀𝑞 ∈ 𝑉 } ;𝑄 ′ = 𝑄 ′ − 𝑉 ;

20 𝑇𝑓 = 𝑇𝑓 ∪ {𝑡 |𝑡 ∈ 𝑁 −1 (𝑞)∀𝑞 ∈ 𝑉 } ;𝑄 𝑓 = 𝑄 𝑓 ∪𝑉 ;

21 For 𝑡 ∈ 𝑇 ′ 𝑣𝑡 = (∑︁𝑞∈𝑁 (𝑡 ) 𝜎𝑞 ) − `𝑡 ;

22 For 𝑞 ∈ 𝑄 ′ 𝑣𝑞 = 𝜎𝑞 − ∑︁
𝑡 ∈𝑁 −1 (𝑞) `𝑡 ;

23 return𝑇 ′,𝑄 ′,𝑇𝑓 ,𝑄 𝑓 ;

Algorithm 1: Inter-query greedy algorithm

3.2.2 The Inter-Query Algorithm in Depth. The greedy algorithm,

shown in Algorithm 1, first invokes ReducePlan (line 2), which

computes 𝑣𝑡 and 𝑣𝑞 (lines 14–15), removes tables with 𝑣𝑡 < 0 from

consideration, and migrates queries with 𝑣𝑞 > 0 to 𝑋𝑑 (lines 17–22).

This loop repeats until there are no more candidates or there are no

tables left (line 16). ReducePlan returns the tables and queries to

migrate and the remaining tables and queries to consider (line 23).

The algorithm then removes all outbound edges from the tables

migrating to𝑋𝑑 (line 3) and proceeds to greedily remove tables from

Save: $0
Time: 2 hrs < 3 hrs

t1

t2

Save: $40
Time: 2.5 hrs < 3 hrs

t1

t3

t2

Save: $65
Time: 4 hrs > 3 hrs

Input: {t1, t2, t3}, {q1, q2, q3}; Xs = BigQuery; Runtime Bound = 3 hrs

q1

q3

q2 t2

q1

q2

Figure 3: The plans considered with a 3 hour runtime bound.

Plan B saves the most money within 3 hours so it is chosen.

consideration. While there are still tables (line 4), the algorithm

computes 𝑣𝑡 (line 5), assigns 𝑡 with minimal 𝑣𝑡 to remain in 𝑋𝑠 , and

removes nodes in 𝑁 (𝑡) (line 6–7). The algorithm calls ReducePlan

again to prune away tables with 𝑣𝑡 < 0 and identify queries with

positive lower bounds (line 8). The algorithm records the cost and

runtime of the current plan using query costs and runtimes 𝐶 and

𝑅, cloud prices 𝑃 , and table sizes 𝑠 (line 10).

Finally, the algorithm chooses the cheapest plan in 𝑝𝑙𝑎𝑛𝐶𝑜𝑠𝑡𝑠

with runtime less than 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸 (line 11). The baseline plan–

migrating no tables or queries–will be cached in 𝑝𝑙𝑎𝑛𝐶𝑜𝑠𝑡𝑠 and will

be chosen if no cheaper plans exist under the runtime constraint.

3.2.3 Optimal Algorithm and Complexity Analysis. To evaluate the

greedy algorithm we: i) present an optimal min-cut based inter-

query algorithm; ii) compare its runtime complexity to the greedy

approach; iii) and show the greedy algorithm’s accuracy in practice.

Optimal Solution. As in [38], we build a capacity function 𝑐 and

a bipartite graph 𝐺 with tables on the left and queries on the right.

Edges with infinite capacity connect tables and queries by query

dependencies. We add a source node 𝑎 and draw edges from 𝑎 to

every table 𝑡𝑖 ; 𝑐 ((𝑎, 𝑡𝑖 )) = `𝑡𝑖 . We add a sink node 𝑏 and draw edges

from every query 𝑞 𝑗 to 𝑏; 𝑐 ((𝑞 𝑗 , 𝑏)) = 𝜎𝑞 𝑗 . The algorithm finds the

min-cut (𝐴, 𝐵) and migrates the queries and tables in 𝐵 to 𝑋𝑑 .

Complexity Analysis. Using a min-cut algorithm [30, 32], the

optimal algorithm has complexity 𝑂 ( |𝑉 |2 |𝐸 |). For the greedy ap-

proach, (note: |𝑉 | = |𝑇 | + |𝑄 |), computing 𝑣𝑡 or 𝑣𝑞 is𝑂 ( |𝑉 |) with at

worst |𝑇 | iterations, yielding a worst-case complexity of 𝑂 ( |𝑇 | |𝑉 |).
The optimal algorithm is both an order of magnitude less efficient

and depends on the number of relationships between queries and

tables. The greedy algorithm is independent of query complexity.

Practical Significance. This difference in complexity between the

optimal and greedy algorithms has practical significance when the

number of queries and tables is large. For example, when using

the TPC-DS workload as input (24 tables and 100 queries), the

difference is insignificant, with both algorithms running in less

than 0.3 seconds. With 1000 queries and 100 tables, the optimal

runtime jumps to 3.4 seconds, while the greedy remains under 0.3

seconds. With 2500 queries and 400 tables, the optimal algorithm

takes 2.1 minutes while the greedy takes 1.2 seconds.

Greedy Algorithm Accuracy. To evaluate accuracy, we use 72

workloads at 1TB and 2TB, both with and without IaaS, and using

both internal and external BigQuery storage, producing 576 work-

loads. We run the greedy and optimal algorithms on each workload.

Our greedy strategy finds the optimal solution for all workloads.
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4 INTRA-QUERY EXECUTION PLAN

We now present the intra-query algorithm to exploit O2. We first

present the setup (Section 4.1) and how to identify where to make

cuts (Section 4.2) before presenting the algorithm (Section 4.3).

4.1 Algorithmic Setup and Goal

The setup is similar to that in Section 3.1, but this algorithm takes a

single query 𝑞 and a runtime constraint for 𝑞 and finds a subquery

that saves money when migrated from 𝑋𝑠 to 𝑋𝑑 after accounting

for migration costs while honoring the runtime constraint.

Formalization and Goal. A query plan is a directed acyclic graph

where leaves represent base tables and edges represent data flow

from upstream tables to downstream operators. Removing all out-

bound edges from a node partitions the graph into two disjoint

subgraphs; we call this process making a cut in the query plan at a

node. The goal of the intra-query algorithm is to find a profitable cut
of 𝑞 so that one subquery executes in 𝑋𝑠 and the other in 𝑋𝑑 so that

the total query cost, including migration cost, is lower than running

the entire query in 𝑋𝑠 while adhering to the runtime constraint.

4.2 Identifying Profitable Cuts

We now present the insight we use to identify profitable cuts. Let

𝑇 = (𝑉 , 𝐸) be a query plan. Let 𝑝𝑏𝑦𝑡𝑒 , 𝑝𝑠𝑒𝑐 , and 𝑒 be per-byte, per-

compute, and egress prices. Let migration cost `𝑡 be as in Equation 2

and let `𝑣 for 𝑣 ∈ 𝑉 be the migration cost of the data output from 𝑣 .

Let 𝑠 be the table size and 𝑟𝑠 (𝑣) be the row size for 𝑣 . Finally, when

a cut is made at a node 𝑣 , the subgraph upstream of 𝑣 is 𝑆u (𝑣)–
including 𝑣 and all base tables that flow into 𝑣–and the subgraph

downstream of 𝑣 is 𝑆
d
(𝑣). We now show some key definitions.

• 𝑓𝑤 (𝑣) returns the output cardinality of 𝑣 ∈ 𝑉
• 𝑓𝑟 (𝑣) returns the runtime of 𝑆𝑢 (𝑣)
• 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸 is an optional runtime constraint for 𝑞.

• L(𝑣): the base tables in the downstream subquery 𝑆𝑑 (𝑣).
• 𝐶𝑠 (𝑣) = 𝛼𝑠

∑︁
𝑢∈L(𝑣) 𝑓𝑤 (𝑢)𝑟𝑠 (𝑢): the cost of 𝑆𝑑 (𝑣) per-byte.

• 𝐶𝑟 (𝑣) = 𝑝𝑠𝑒𝑐 𝑓𝑟 (𝑣): the cost of 𝑆𝑢 (𝑣) per-compute.

• 𝐶𝑚 (𝑣) = `𝑣 +
∑︁
𝑡 ∈L(𝑣) `𝑡 : the cost to migrate all necessary data,

including the output of 𝑣 , to 𝑋𝑑 .

These values require query costs 𝐶𝑋𝑖
and runtime 𝑅𝑋𝑖

in all

execution backends. The algorithm’s goal is to find 𝑣 ∈ 𝑉 such that:

𝐶𝑟 (𝑣) +𝐶𝑚 (𝑣) +𝐶𝑠 (𝑣) < 𝐶𝑋𝑠
(𝑞) (4)

This finds the cheapest plan, represented on the left, that costs

less than simply executing the query in 𝑋𝑠 .

Insight. Naively, we could find the optimal execution plan by

making a cut at every operator and executing each resulting plan.

This approach requires we pay query processing and migration

costs for each possible plan, and the number of possible plans grows

with the size of the query. Our goal is to find cheaper execution

plans while minimizing the incurred overhead costs.

To achieve this goal, we assign a value to each operator in 𝑞

corresponding to the savings opportunity of making a cut at that

operator. Using the inputs to the algorithm, we reorder Equation 4

and compute the maximum savings achievable by an intra-query

plan.We consider those operators with positive savings opportunity

and use this value to guide what candidate operators we evaluate.

Calculating Savings Opportunity. The savings opportunity 𝑜𝑣
is the right hand side of 𝑝𝑠𝑒𝑐 𝑓𝑟 (𝑣) < 𝐶𝑋𝑠

(𝑞) − (𝐶𝑚 (𝑣) + 𝐶𝑠 (𝑣)),
derived from Equation 4, which we compute using 𝐶𝑋𝑖

and 𝑓𝑤 . We

draw two conclusions. First, if 𝑜𝑣 < 0, the plan produced from a

cut at 𝑣 will cost more than the baseline. Second, the only way to

determine if a plan will cost less is to pay to compute 𝑓𝑟 , so the

algorithm aims to reduce the number of times it computes 𝑓𝑟 .

1 Function IntraQuery(𝑇 = (𝑉 , 𝐸 ) , 𝑋 , P, 𝑒 , 𝑓𝑤 ,𝐶 , 𝑅, 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸):
2 for 𝑢 ∈ 𝑉 do

3 𝑜𝑢 = 𝐶𝑋𝑠 (𝑞) − (𝐶𝑚 (𝑢 ) +𝐶𝑠 (𝑢 ) ) ;
4 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = {𝑣 ∈ 𝑉 |𝑜𝑣 > 0} ;
5 while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ or number of iters < 𝐾 do

6 Pick 𝑢 from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 such that 𝑜𝑣 is largest ;

7 Compute 𝑓𝑟 (𝑢 ) ;
8 Compute 𝑎𝑢 = 𝑜𝑢 − 𝑝𝑠𝑒𝑐 𝑓𝑟 (𝑢 ) ;
9 for 𝑣 ≠ 𝑢 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
10 If 𝑜𝑣 < 𝑎𝑢 remove 𝑣 from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

11 for 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ; 𝑣 downstream of 𝑢 do

12 𝑜𝑣 = 𝑜𝑣 − 𝑝𝑠𝑒𝑐 𝑓𝑟 (𝑢 ) ;
13 If 𝑜𝑣 < 0 remove 𝑣 from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

14 Return 𝑢 with maximum 𝑎𝑢 > 0 under 𝐷𝐸𝐴𝐷𝐿𝐼𝑁𝐸 or baseline;

Algorithm 2: Intra-query algorithm

Updating Opportunities.Measuring 𝑓𝑟 allows us to update the

opportunities for other nodes. For example, if a node 𝑢1 sits down-

stream of another node𝑢2, 𝑓𝑟 (𝑢1) ≥ 𝑓𝑟 (𝑢2), so if we compute 𝑓𝑟 (𝑢2),
𝑜𝑢1 must decrease by 𝑝𝑠𝑒𝑐 𝑓𝑟 (𝑢2) since it must pay at least that much

in runtime cost. If we measure the savings for a plan 𝑎𝑢 , we can

remove all candidates with 𝑜𝑢1 < 𝑎𝑢2 because a cut at 𝑢1 cannot

produce a cheaper execution plan. We can then remove multiple

candidates per iteration, reducing the number of invocations to 𝑓𝑟 .

4.3 Intra-Query Algorithm

The intra-query algorithm, in Algorithm 2, computes the opportu-

nity 𝑜𝑢 for every node (lines 2-3) and picks candidates with 𝑜𝑢 > 0

(line 4). It iterates over the candidates from largest to smallest 𝑜𝑢
(line 6). Computing 𝑓𝑟 for all candidates may be expensive, so iterat-

ing from largest to smallest opportunity ensures that the potential

savings lost by not iterating over all candidates are minimized.

For each candidate 𝑢, the algorithm computes 𝑓𝑟 (𝑢), the real

savings, 𝑎𝑢 , (lines 7–8) and updates the opportunity for other can-

didates (lines 10–16). It repeats this until all candidates have been

checked or after 𝐾 iterations (line 5). The algorithm chooses the

cut that yields the most savings within the runtime constraint or

the baseline if no such cut exists (line 14).

Complexity and Discussion of Optimality. The algorithm re-

moves at least one candidate per iteration, so the worst-case com-

plexity is 𝑂 ( |𝑉 |). The algorithm by default considers all cuts in a

query plan that could yield savings and chooses the optimal cut.

The algorithm only parses a single query plan, but it will never

choose an execution plan more expensive than the baseline.

5 ARACHNE OVERVIEW

We implement Arachne, including the inter- and intra-query al-

gorithms, in 8k lines of Python and Java. We present Arachne’s
architecture in Section 5.1, the profiler in Section 5.2, and other

cost-relevant implementation decisions in Section 5.3.
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Figure 4: Arachne architecture and execution backends.

5.1 Overview

Figure 4 shows Arachne’s architecture. Users first execute initial-
ize, which submits an unmodified SQL workload, stored as indi-

vidual SQL files, the source execution backend where data starts,

and the optional runtime constraint. Arachne implements the inter-

and intra-query algorithms in the savingsmodule. The profiler
module gathers the query costs and query runtime inputs (𝐶𝑋𝑖

and

𝑅𝑋𝑖
from Sections 3–4) so the savings module can save money and

meet the runtime constraint. The preparationmodule prepares

queries for execution in target backends. It 1) ensures that SQL

queries are compatible with the syntax requirements of execution

backends; 2) submits queries for execution; 3) orchestrates material-

izing data into portable, open-format Parquet files; and 4) migrates

those Parquet files between execution backends when needed.

Execution Backends. Arachne supports two PaaS backends–AWS

Redshift and Google BigQuery–so we can study per-compute and

per-byte pricing models. It can also deploy DuckDB on IaaS. These

backends are bolded in Figure 4. Arachne can be easily extended to

support new backends, such as those in dashed lines in Figure 4.

Minimizing Infrastructure Changes. Arachne is designed to

be compatible with existing ETL pipelines (and downstream BI

tools and dashboards), so it moves data between source backends

at runtime whenever this saves money and does so transparently

to the end user. Consequently, Arachne moves data every time a

workload executes (incurring costs) but does not need to handle

data inconsistencies that may arise if, for example, the data were

replicated in several backend systems. Exploring tradeoffs of the

spectrum of solutions (keep ETLs intact and pay repeated migration

costs or change ETLs, duplicate data, and incur double storage costs)

is beyond the scope of this paper. Despite minimizing infrastructure

changes, Arachne still requires configuration changes, e.g., to access
cloud accounts. We believe this is not an important roadblock to

deployment, as such credentials are frequently shared with other

tools. These changes add one-time costs; in exchange, Arachne
achieves large recurring savings (see Section 6).

Compliance. At a high level, Arachne is best seen as an alternative

interface to the source backend.When data (or queries) cannotmove

(or execute) between vendors, e.g., for compliance requirements

preventing data migration to a geographical area, such data can be

excluded from Arachne and run using the usual interface.

Implementation. Arachne uses Apache Calcite [13] to convert

between SQL and query plans and perform query optimization.

Arachne uses Apache Arrow [3] to sample tables; the Redshift-Data

API to use Redshift clusters and S3; and the Google Cloud client for

Storage and BigQuery. It migrates all data at runtime.

5.2 ProfilerModule

The profiler module provides the inter- and intra-query algorithms

with accurate runtime, cost, and cardinality information for each

query. We consider two approaches: prediction and profiling.

WhyWeDoNotUse Prediction inArachne. Existing approaches
to estimate operator cardinality 𝑓𝑤 , query cost 𝐶𝑋𝑖

, and query run-

time 𝑅𝑋𝑖
are noisy. Cardinality estimates from query optimizers

remain inaccurate [48, 54, 76]. The “cost” produced by query opti-

mizers for a given query plan has only a relative meaning to the

cost associated to other plans rather than to absolute monetary

or runtime cost, making query optimizers’ cost a poor proxy for

estimating runtime [44, 74]. Last, there are few approaches for esti-

mating query runtime given a query plan, and existing ones often

underperform, as we show in Section 6.6. However, we anticipate

that continued advances in this area could replace the profiling

approach we now explain.

The Profiling Approach. The profiler executes each query in each

execution backend, obtaining its runtime and cost. It also gathers

the output cardinality for each query operator via query profiling

in DuckDB, and provides the inputs to the inter- and intra-query

algorithms (𝐶𝑋𝑖
, 𝑅𝑋𝑖

, and 𝑓𝑤 as defined in Sections 3–4). Profiling

is more accurate and more costly than prediction. Profiling cost

is amortized if the profiled queries execute several times without

major runtime changes. This is the case for most periodic work-

loads [9, 18, 65], which happen to be the most relevant for saving

money. Furthermore, stale profiles can still expose savings opportu-

nities since small errors in costs do not greatly alter what queries

migrate in an inter-query plan, as we illustrate in Section 6.6.

Profiling Over Samples. It is possible to reduce profiling costs

by measuring runtime, cost, and operator cardinality on a work-

load sample and then extrapolating to the original workload size

without introducing significant error. It is difficult to extrapolate

query runtime from samples, which is related to the difficulty of

join sampling. If the output of a join over data samples is not a

sample of the true join result, we cannot accurately extrapolate

runtime for the full join [22]. However, profiling costs are largely

in pay-per-byte pricing models and depend only on the data size.

We show empirically in Section 6.6 that the profiling cost is quickly

compensated by workload savings, often in less than 5 executions

of the cheaper execution plan when profiling over the entire dataset

and in 1–2 iterations when using a sample. For periodic workloads,

we can collect profiles during iterations of the workload to reduce

the net profiling costs. We see then that profiling costs are quickly

compensated by workload savings.

Assigning Operator Cardinalities. To provide operator cardinal-

ity 𝑓𝑤 (Section 4.2), Arachne profiles queries in DuckDB as cardi-

nality is independent of execution backend. However, DuckDB’s

physical plan may not match Arachne’s internal query plan, so

Arachne cannot directly match operator profiles from DuckDB

onto its query plan. We observed that DuckDB does not re-order

operators between SQL subqueries, soArachnewrites its query plan
into SQL, with all operator trees as nested subqueries, so DuckDB’s

physical plan exactly matches Arachne’s and Arachne can assign

cardinalities to operators in its internal query plan.
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5.3 Cost-Relevant Implementation Details

Data Transfer Between Clouds. Cloud vendors provide easy-to-

use tools (e.g., AWS DataSync) to transfer data into their clouds.

Beyond the egress cost of doing so, users have to pay for these tools

too. Arachne implements a simple cloud transfer tool using blob

storage APIs. Our tool on a GCP n2-standard-32 VM transferred a

615GB dataset for $0.58; that transfer in AWS DataSync costs $7.69.

SQL Compatibility. Arachne builds and applies text rules to en-

sure Arachne-produced SQL is compatible with different backend

dialect rules, e.g., BigQuery requires column names to contain only

alphanumerics or underscores.

Calcite Query Operators. Arachne implements its own physical

node subclass and uses Calcite libraries to perform heuristic opti-

mizations like predicate pushdown, make cuts in query plans, and

assign cardinalities collected during profiling to query operators.

6 EVALUATION

In this section, we answer the following research questions:

• RQ1: Does the inter-query algorithm save money? (O1)

• RQ2: Does the intra-query algorithm save money? (O2)

• RQ3: How does pricing (chosen by cloud vendors) affect inter-

query savings and the runtime-cost tradeoff?

• RQ4: ProfilerMicrobenchmarks: How does sampling impact pro-

filing costs and accuracy and how quickly are they compensated?

Does using stale profiles diminish savings? How are savings im-

pacted by noisy runtime estimates versus profiles?

Because Arachne can deploy DuckDB on IaaS, we also evaluate

how utilizing cheaper IaaS impacts inter-query savings.

6.1 Workloads

Resource Balance Workloads. The specific balance of CPU- and
IO-queries in a workload will impact savings opportunities. We use

the well-known TPC-DS [52] benchmark to create three workloads

each with a different balance of CPU- and IO-bound queries to

explore the design space (in the original TPC-DS benchmark nearly

all of the 99 queries are IO-bound). We adapt queries from LDBC, a

well-known business intelligence benchmark [64], to work on data

from TPC-DS: we create queries to find customers related to each

other by purchase history and queries to find connected compo-

nents of customers for recommendation algorithms. We combine

the authored CPU- and some existing IO-bound queries to create

three workloads over 17 tables with different characteristics:

• W-CPU: 46 queries, about 40% of which are CPU-bound.

• W-Mixed: 49 queries, about 30% of which are CPU-bound.

• W-IO: 46 queries, about 20% of which are CPU-bound.

While there are more IO-bound queries in each workload, the

CPU-bound queries consume a large amount of CPU, so overall

resource consumption for each workload reflects the workload’s

name.Wemake all workloads publicly available
1
for reproducibility

and because they may be of independent interest to others.

1
https://github.com/tapansriv/resource-balance-workloads

Read-Heavy Workloads. We also explore skewed workloads.

While nearly all TPC-DS queries are IO-bound with runtime domi-

nated by table reads, these queries differ in runtime and complexity.

To explore savings opportunities on a range of IO-bound workloads

we create 24 workloads called the Read-Heavy workloads from

TPC-DS, which contains 24 tables and 99 queries, by removing one

table from the TPC-DS dataset. This creates a 23-table dataset with a

subset of the original 99 queries, on average about 80 queries. Each

workload is named by the alphabetical order of the table that was

removed to generate it, e.g., the workload created by removing the

first table alphabetically, call_center, will be named Read-Heavy 0.

LDBC. Additionally, we use queries written on the LDBC Social

Network Benchmark-Business Intelligence (SNB-BI) dataset [64].

For RQ1 and RQ3we use the Resource Balance and Read-Heavy

Workloads. For RQ2, we use TPC-DS queries and author queries

on TPC-DS and LDBC. We explain these in detail in that section.

6.2 Experimental Setup

PaaS Execution Backends. We use Google BigQuery (pay-per-
byte) and AWS Redshift (pay-per-compute) as popular representa-
tives of each pricing model. In Redshift cluster size impacts cost

and performance, so we explore the G→A1, G→A4, G→A8 setups

where data starts in BigQuery (G) and we consider migrating to a 1-,

4-, or 8-node ra3.xlplus Redshift cluster respectively (→A1,→A4,

or→A8; the arrow indicates the migration direction). We explore

the A4→G setup where data starts in a 4-node ra3.xlplus Redshift

cluster and could migrate to BigQuery. We optimize our Redshift

and BigQuery setup per docs and best practices [16, 19, 59, 61].

Data Format and Storage. We store intermediate data in Parquet

files [4] with Snappy compression [62]. All cloud databases we use

are compatible with open data formats [28, 56]. We create external

tables in BigQuery pointing to the Parquet files in blob storage. We

also consider data loaded into BigQuery. Redshift loads Parquet

files from S3. The compression of data saves migration costs, and

all in-flight compression occurs during materialization from pay-

per-compute databases and is billed as runtime cost.

Where Data Is Initially Stored. For the Resource Balance Work-

loads, we consider G→A4 and A4→G.With current prices, Redshift

is significantly cheaper than BigQuery for IO-skewed workloads

and queries. As such, we consider only G→A1, G→A4, G→A8

for the Read-Heavy workloads to evaluate O1 and only consider

DuckDB and BigQuery on data stored in GCP to evaluate O2, as

there are few savings opportunities if data starts in Redshift.

HowWorkloads Are Executed. Batch, analytic workloads like

those in this evaluation are often executed serially but can also be

submitted all at once to a system [8, 40]. For pay-per-byte systems

like BigQuery, this has no impact on workload cost, only runtime.

For pay-per-compute systems like Redshift, this also impacts costs.

Redshift’s REST API, the Redshift Data API [12] offers BatchExe-

cuteStatement which executes a list of SQL statements one at a

time in a single transaction.

Metrics. We measure monetary cost in US dollars and runtime

in time units. We account for all applicable cloud costs (see Sec-

tion 2.1.2) and use cloud prices as of February’24 in Table 1. We

validate our results by checking the breakdown of charges in our

7
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Figure 5: (1TB A4→G, G→A4) Cost (USD) vs runtime (hours)

for W-CPU, W-IO, andMixed workload compositions

account from cloud vendors. We create VMs in the same cloud

region as blob storage buckets to avoid regional transfer costs and

utilize data compression to reduce migration costs.

Runtime Constraint. We assume that there are no runtime cons-

traints and concentrate on exploring cost savings without imposing

arbitrary runtime constraints that do not add any additional insight.

6.3 RQ1. Inter-Query Processing

We now explore O1. First, we evaluate the cost opportunities of

the inter-query algorithm across the three Resource Balance Work-

loads (Section 6.3.1) and the IO-skewed Read-Heavy workloads

(Section 6.3.2). Then, we leverage that Arachne can deploy DuckDB

on IaaS to evaluate how that impacts savings (Section 6.3.3).

6.3.1 Resource Balance Workloads. We run the inter-query algo-

rithm onW-CPU,W-IO, andW-Mixed in G→A4 and A4→G and

evaluate multi-cloud savings. First, we provide an overview of the

results before presenting an in-depth breakdown of costs.

Resource Balance Workload Overview. In Figure 5 we compare

the runtime (hours) on the x-axis and cost (USD) on the y-axis of

Arachne’s execution plan to a baseline that executes the workload

in the starting backend. In Figure 5a, data starts in Redshift. There

are three red dots, one for each workload, which represent the cost

and runtime of executing that workload in Redshift. The yellow

dots represent the runtime and cost of executing that workload with

Arachne. A line connects each yellow dot to its corresponding red

dot according to the workload. In Figure 5b, data starts in BigQuery

(blue dots) instead of Redshift.

In 5 out of the 6 workloads Arachne finds cheaper plans: all

lines decrease from the starting cloud baseline unless Arachne has
chosen the baseline execution plan, and the degree of its reduc-

tion corresponds to monetary savings. For A4→G in Figure 5a,

Arachne chooses multi-cloud plans for all three workloads as there

are enough CPU-bound queries to make migration cost-effective.

Arachne saves 27% onW-IO and 35% onW-Mixed andW-CPU over

the Redshift baseline. Arachne saves less money for W-IO because

there are more IO-bound queries that favor Redshift’s per-second

pricing model. In G→A4 in Figure 5b, Arachne executes W-CPU

entirely in BigQuery, so those two dots are directly on top of each

other. SinceW-Mixed andW-IO contain more IO-bound queries,

Arachne saves 1.35% onW-Mixed and 17% onW-IO by migrating

IO-bound queries to Redshift. Because W-IO has more IO-bound
queries, the margin of savings is larger forW-IO than forW-Mixed.

Both W-Mixed and W-CPU include a very CPU-bound query,

which groups customers by spending history for recommendations.

It runs in 6 hours and costs $25.84 in Redshift, while in BigQuery
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Figure 6: (1TB) Arachne migration costs, cost of queries

moved, and cost of queries remaining versus baseline.

Table 2: Inter-query plan-type by setup at 1TB and 2TB.

Setup Arachne Multi GCP AWS Total

1TB, G→A1,→A4,→A8 23 6 1 17 24

2TB, G→A1 22 4 1 19 24

2TB, G→A4 22 3 2 19 24

2TB, G→A8 22 4 2 18 24

it runs in 3.5 minutes and costs $1. Other CPU-bound queries are

similarly faster and cheaper in BigQuery. Consequently, in the

A4→G setup in Figure 5a, baseline costs for W-Mixed and W-CPU

are similar, and Arachne chooses similar multi-cloud plans for both

workloads that are faster and cheaper than the Redshift baseline.

Resource Balance Workload Cost Breakdown. We divide costs

for Arachne into (1) migration costs, (2) the cost of queries which

migrated, and (3) the cost of queries which remained in the source

backend. In Figure 6a we breakdown costs for plans shown in

Figure 5a and in Figure 6b we breakdown costs for plans in Figure 5b.

Diagonal lines are drawn through bars showing Arachne’s plans.
In Figure 6b, W-CPU Arachne’s bar is equal to the BigQuery

baseline. If the source pricing model is already favorable for a

workload, Arachne will keep all data in the starting cloud. For

all other plans in Figure 6, multi-cloud savings are driven by the

significantly lower execution cost for queries that migrated to a

favorable pricing model versus their baseline cost. In Figure 6, the

difference in query execution costs is the baseline (right) bar minus

the blue portion of Arachne’s bar, which represents the cost of

queries remaining, presenting an enormous savings opportunity.

Exorbitant migration costs make up the majority of Arachne’s costs
for multi-cloud plans. Egress is 90% of all migration costs–note that

egress out of GCP is $120/TB while egress out of AWS is $90/TB–

loading data into Redshift is 5–8% of migration costs, and the rest

is the cost of blob storage and data retrieval.

6.3.2 Read-HeavyWorkloads. DoesArachne savemoney on skewed

workloads? We first summarize the results before zooming in on a

few interesting workloads to understand the cost and runtime.

Read-Heavy Overview. Table 2 presents the outcomes in setups

G→A1, G→A4, G→A8. The Arachne column indicates workloads

where Arachne saves money over the BigQuery baseline. Across

144 workloads–48 workloads in 3 setups–only 6/144 remain in

BigQuery where the Arachne saves no money. For workloads with

cheaper plans, in Multi plans some tables migrate to Redshift,

and in AWS plans all tables migrate to Redshift. Since Read-Heavy

workloads are IO-bound, the savings of moving queries to Redshift
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Figure 7: Cost (USD) vs runtime (hours) for 1–2TB datasets

withMulti plans over Redshift and BigQuery.

compensate for migration costs. That even 6 of these IO-skewed

workloads remain in BigQuery demonstrates that egress costs are

a massive barrier to data movement.

At 2TB, we see that from G→A1 to G→A4 oneMulti plan flips

to GCP and from G→A4 to G→A8 one AWS plan flips to Multi.

The 4× cost of G→A4 doesn’t reduce runtime by 4×, decreasing
savings. If clusters are overprovisioned or underutilized, query

savings will diminish even with highly IO-bound workloads.

Arachne saves up to 57.4% on a single workload.Of the 29 multi-

cloud plans, most achieved 35%–50% savings. 9 saved 2%-8%, while

1 saved less than 1%. These plans save money by migrating queries

to their most beneficial pricing model.

Multi Plan Analysis. We now focus on Multi plans which run

queries on both BigQuery and Redshift to show the opportunities

of combining price-per-byte and price-per-compute pricing models.

As in Figure 5, Figure 7 plots workload cost versus runtime for

Multi plans. Blue dots represent BigQuery baseline plans while

yellow dots represent Arachne plans. Dots corresponding to the

same workload are connected with a line. These plans achieve up

to 54% savings and over 35% for most workloads. 2 workloads at

1TB and 1 workload at 2TB save between 2 and 8%. 1 workload

at 2TB G→A1 saves less than 1%, as Arachne migrates very few

queries and tables which yield marginal savings.

In Figure 7, the BigQuery baseline is faster than Arachne’s plan
because G→A1 does not exploit all the parallelism available in the

workload. At G→A4 we see that Arachne’s plan is cheaper and

closer in runtime to the baseline, and is both cheaper and faster

in G→A8. In larger clusters, loading times decrease, and Redshift

completes the workloads faster (and cheaper) than BigQuery. At
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Figure 8: Query costs normalized to most expensive plan

for Arachne’s intra-query plan vs BigQuery, DuckDB, and

DuckDB with Arachne-produced text (Alt Syntax).

2TB, the trends are similar to 1TB except that now Arachne is both
cheaper and faster than BigQuery even in the G→A4 case.

BigQuery Internal Tables. Loading data into BigQuery is free

but significantly increases runtime; loading 1TB took 12 minutes

whereas creating external tables took only 20 seconds. Data is stored

in a closed format and only accessible via their SQL interface, which

incurs query processing costs, or BigQuery’s Storage Read API [36];

both are much more expensive than the blob storage API costs.

For queries over internal tables, BigQuery charges once for each

table scanned, even if the table is scanned multiple times in the

query. For queries over external tables, BigQuery charges for each
table scan operator, even if multiple operators scan the same table.

So the same query will scan fewer bytes and cost less when data

is stored internally. We run the inter-query algorithm on G→A1,

G→A4, and G→A8 with data stored internally. There are 3-5 multi-

cloud workloads in each setup saving 3–20% and 2 with negligible

savings, similar to the external case, because of high BigQuery

prices and the large IO-bound savings in the Read-Heavyworkloads.

These savings margins are smaller due to the fewer bytes billed.

6.3.3 Extending Arachne with IaaS+DuckDB. We now explore the

cost differences between PaaS (the databases evaluated above) and a

new execution backend that deploys DuckDB on a GCP VM, where

data starts, to avoid egress costs. The VM costs $1.49/hour with 16

vCPU, 190GB RAM, and 1TB disk to run memory-intensive queries.

This VM did not have enough memory to run all queries. To

concentrate on studying the effect of IaaS, we edited the queries

slightly, replacing WITH clauses with CREATE TABLE AS clauses

so that intermediate tables are offloaded to disk. While this may

increase query runtime it allowed the query to complete so we

could proceed with our study. We only consider queries which

execute in all execution backends.

In this setup,Arachne does notmigrate any queries to Redshift, as

IaaS lowered query costs enough that migration is not worthwhile.

However, Arachne still achieves up to 55% savings over the pay-

per-byte BigQuery (PaaS) baseline by utilizing cheaper, pay-per-

compute IaaS which dramatically reduces costs for the IO-bound

workloads. Hence, Arachne can identify opportunities and achieve

significant savings with a transparent deployment of DuckDB on

IaaS, all without separate user setup, deployment, or maintenance.

6.3.4 Summary. Arachne successfully exploits the inter-query al-

gorithm (O1), even in highly skewedworkloads if the source pricing

model is ineffective for it. Arachne chooses multi-cloud plans saving

35%–56% in most cases by using multiple pricing models.
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Figure 9: (G→A4, A4→G 1TB) % savings for inter-query plans vs. BigQuery or egress prices on Resource Balance Workloads

0.0 2.5 5.0 7.5 10.0 12.5
BigQuery Price $/TB

0

10

20

Nu
m

be
r o

f P
la

ns

(a) 1TB Varying BigQuery Price

0.00 0.04 0.08 0.12 0.16 0.20 0.24
Egress Price $/GB

0

10

20

Nu
m

be
r o

f P
la

ns Multi: GA1
BQ
RS-1

(b) 1TB Varying Egress Price

Figure 10: (G→A1 1TB) Inter-query results varying either

BigQuery or egress price on Read-Heavy Workloads

Table 3: Absolute baseline and Arachne intra-query costs.

Query Arachne BigQuery DuckDB Alt Syntax

67 $1.83 $4.9981 $20.4027 $21.0109

Square $0.005507 $0.0156 $0.07321 $0.05069

86 (2TB) $0.089574 $0.62853 $0.1605 $0.15144

86 (10TB) $0.278728 $3.142 $0.63195 $0.60877

Window $0.311999 $1.1791 $3.7159 $3.7159

6.4 RQ2. Intra-Query Processing

In this section, we explore opportunity O2 via the intra-query algo-

rithm. These opportunities are significant but occur less often than

O1, so we report results for five queries that produced a cheaper

intra-query plan and analyze the characteristics of these queries.

Queries. Query 67 and window are run on a 1TB TPC-DS dataset

and query 86 is run on a 2TB and 10TB TPC-DS dataset. The win-

dow query performs several joins and group-bys and executes a

complex window operation on the result. The sqare query, run

on 100GB LDBC-SNB dataset, finds squares in social media graphs,

e.g., a path from person A to B to C to D and back to A.

Experimental Setup. Data starts in BigQuery, and we consider

intra-query plans between BigQuery (pay-per-byte) and DuckDB

(pay-per-compute) on a GCP VM. Expensive egress fees restrict

data movement and eliminate intra-query opportunities across

multiple clouds, so we consider GCP-only intra-query plans. We

pay profiling costs to copy data to the VM and execute queries

in BigQuery and DuckDB, gathering cost, runtime, and operator

cardinality. Arachne converts its internal query plan into SQL to

execute subqueries, but we observe that alternate SQL texts for

the same logical query can cause the optimizer to choose different

physical plans, affecting runtime and cost. To isolate this factor, we

consider a third baseline, called Alt Syntax, which is the cost of

executing the initial query rewritten by Arachne in DuckDB.

Results. Figure 8 shows the costs for Arachne’s intra-query plan

and the baselines normalized to themost expensive baseline for each

Table 4: Runtime (seconds) for baselines and Arachne plans.

Query Arachne BigQuery DuckDB Alt Syntax

67 4059.96 555.333 50655.30 51107.595

Square 188.226 14.569 168.727 113.961

86 (2TB) 171.051 206.045 381.271 359.023

86 (10TB) 580.898 423.063 1527.825 1471.458

Window 624.970 82.155 9038.641 8954.334

query. Arachne’s plans save 2–5× compared to the next cheapest

baseline and orders of magnitude compared to the most expensive

baseline, showing the cost saving potential of O2. We normalize

values to emphasize the relative savings as the absolute savings are

small because out-of-memory errors on larger datasets prevented us

from using longer-running queries. We show the absolute numbers

in Table 3 and note that relative costs better represent total savings,

as the total savings are query savings multiplied by the number

of times a query executes. While intra-query plans sometimes run

slower than the fastest baseline (shown in Table 4), this potential

slowdown is tolerable if the query is run in a latency-insensitive,

periodic workload such as a nightly analytics workload.

Common Characteristics. These queries first join many tables

(IO-bound) followed by a window or self-join (CPU-bound). Queries

with these stages are good candidates for the intra-query algorithm.

Summary. There are fewer situations where O2 saves money ver-

sus O1, but when opportunities exist, the relative savings are sig-

nificant, especially for queries with the structure discussed above.

Profiling costs for 3/5 queries are earned back in under 25 iterations.

Query 67 and window are earned back in 28 and 46 iterations and

cost $85.68 and $40.18. The savings achieved are significant and

compensate for incurred profiling costs. Re-profiling may be re-

quired more frequently for O2 than O1, increasing costs. However,

the sizable savings margin can quickly earn back that up-front cost.

6.5 RQ3. Simulating Different Cloud Costs

So far, the results shown assume cloud vendor prices as of Feb-

ruary’24. In this section, we use profiled inputs (discussed in Sec-

tion 5.2) that are not affected by cloud vendor prices and simulate

cloud prices by varying the price inputs to the inter-query algo-

rithm. We vary the price-per-byte (BigQuery price) and egress price

from the source execution backend and run the inter-query algo-

rithm on the Read-Heavy (RH) workloads and Resource Balance

Workloads (RBW) to see how varying prices impacts savings. Ver-

tical lines indicate the current price. We use the plan types as in

Section 6.3–GCP, AWS, or Multi. For RBW, we show percent sav-

ings (Figure 9) versus the price being varied in A4→G and G→A4.
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Figure 11: (1TB G→A4) % Savings and speedup of Arachne
for Read-Heavy 22 vs. BigQuery and egress price.

Figure 10 shows plan types for RH in G→A1 at 1TB; trends are

similar in G→A4 and G→A8 and at 2TB. The main takeaways are:

• Inter-query savings (O1) are robust to changes in prices even for

heavily IO-bound workloads.

• Reducing BigQuery price by 40% to $3.75/TB keeps most RH

plans in BigQuery. At 2TB the necessary price reduction increases

because potential savings grow as dataset size grows.

• For RBW, in A4→G BigQuery price does not impact plan type

but slightly reduces savings. In G→A4, reducing prices by 20%

to $5/TB keeps all plans in BigQuery.

• At low egress prices, Multi plans are the cheapest option for

4/24 RH workloads in 1–2TB and all RBWs in A4→G. Even if

cloud vendors lower financial barriers to data movement, money-

saving, inter-query opportunities (O1) still exist.

• High egress prices lock-in all RBW plans to their starting cloud.

For RH, multi-cloud plans still exist, so savings achievable by

using multiple pricing models outpace egress costs.

Runtime vs. Cost Tradeoffs. To observe how cloud prices impact

cost and runtime tradeoffs, we zoom in on Read-Heavy 22 at

G→A4 1TB and show the percent savings and percent speedup over

the baseline vs. BigQuery and egress prices in Figure 11. Negative

percent speedup indicates that Arachne’s plan is slower.

A small increase in BigQuery price from $6.25/TB to $7/TB causes

Arachne to migrate more tables in a multi-cloud plan, which runs

longer than the baseline but achieves greater savings. A slight

decrease of egress cost to $0.105/GB from $0.12/GB yields a similar

result for the same reasons, as migrating more tables increases

savings but also runtime. At many other prices the Arachne’s plan
is both cheaper and faster. Figure 11 illustrates how the specific

tradeoff of runtime and cost is impacted by cloud vendor prices.

Conclusions. Overall, we see that our results are not brittle to

price changes: some queries are simply cheaper in different pricing

models and prices dictate how large savings are and how large

barriers to migration are. More importantly, they show the power

platforms have to lock in workloads by adjusting prices slightly;

this anti-competitive restriction should be concerning to all of us.

6.6 RQ4: Profiling Cost Microbenchmarks

Gathering inter-query inputs (Section 5.2) incurs significant profil-
ing costs. We show how stale profiles impact savings (Section 6.6.1),

how profiling over samples lowers profiling costs (Section 6.6.2),

and how noisy runtime estimates impact savings (Section 6.6.3)

6.6.1 Impact of Re-profiling. We first study the savings impact of

using stale profiles as data changes. We create 7 datasets with sizes
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Figure 12: (G→A4) Cost (USD) vs days and data size (TB)

from 100–1200GB with the official TPC-DS generator. A TPC-DS

dataset reflects a database at a moment in time for a retail supplier.

While tables tracking sales and returns only grow with overall data

size, other tables tracking inventory or customers grow and shrink

as overall data size increases, per the TPC-DS specification [70].

We let each data size be the state on a given day over 7 days.

In Figure 12 we compare four execution strategies in G→A4 as

data changes. We compare the BigQuery baseline (BQ), against two

Arachne strategies: profiling only on day 1 (A-1P) and using that

profile for days 2–7; and profiling as soon as data changes (the solid

red line, A-RP). A-1P and A-RP include profiling costs. Finally, we

show the cost of A-RP without profiling costs as the dotted red line.

We compare these strategies on Read-Heavy 2 which showed the

largest gap between A-1P and A-RP. While A-RP is cheaper over

time, it is at most 2% cheaper than A-1P. Daily re-profiling costs

make A-RP far more expensive than BQ. A-1P quickly compensates

for profiling costs and saves significantly over BQ. A-1P’s stale

profile still captures which queries are cheaper in which backend,

so small errors in the profile do not appreciably diminish savings.

6.6.2 Sampling. We now show how sampling reduces profiling

costs with low error. While estimating runtime from samples is

difficult for some queries [22, 47, 76], most profiling cost are from

pay-per-byte pricing models, where runtime does not affect cost.

We show cost and estimation error for samples of 15, 25, 50,

and 100% of data in Table 5. When profiling over all data, 20/24

workloads earn back profiling costs in 4 iterations. Small samples

estimate the inputs well and in most cases lower the number of

needed iterations to 1–2. Read-Heavy 7 chooses a GCP-only plan so

achieves no savings. Read-Heavy 17 only achieves marginal savings

and needs many iterations, though sampling lowers the net cost of

profiling. We do not claim that sampling is the best approach, only

that it cheapens profiling. More sophisticated approaches, e.g., using

parameterized cost models to sample non-linear operators [46] can

further reduce error, which we leave for future work.

6.6.3 Profiling versus Runtime Estimation. We estimate query run-

times in Redshift by training a Kernel Canonical Correlation Anal-

ysis (KCCA) model, as proposed by Ganapathi et. al. [34] in 2009
2
.

KCCA finds correlated clusters of training features and labels to

make predictions. However, hardware advances over 15 years mean

that queries run much faster, so most training points are clustered

2
The authors of the original paper could not provide the materials to reproduce their

work; we replicated their model effort to the best of our ability
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Table 5: Profiling costs, iters to earn back profiling costs, and

est. error for 15, 25, 50, and 100% samples (G→A1 1TB).

Sample % 15 25 50 100

Dataset Cost Iter Error Cost Iter Error Cost Iter Error Cost Iter Error

Read-Heavy 0 30.39 1 0.02 49.33 1 0.03 94.2 2 0.03 177.19 3 0.0

Read-Heavy 1 30.04 1 0.02 48.71 1 0.03 92.97 2 0.03 174.93 3 0.0

Read-Heavy 2 27.41 1 0.02 44.49 1 0.03 84.54 2 0.04 157.69 3 0.0

Read-Heavy 3 17.54 1 0.03 28.17 1 0.04 53.45 2 0.05 97.78 4 0.0

Read-Heavy 4 25.6 1 0.03 41.33 2 0.04 78.14 2 0.04 143.91 4 0.0

Read-Heavy 5 26.12 1 0.03 42.24 2 0.03 80.01 2 0.04 148.96 4 0.0

Read-Heavy 6 27.55 1 0.02 44.49 1 0.03 84.55 2 0.04 157.9 4 0.0

Read-Heavy 7 13.86 N/A 0.06 21.87 N/A 0.09 39.3 N/A 0.1 65.17 N/A 0.0

Read-Heavy 8 28.25 1 0.02 45.62 1 0.03 86.77 2 0.03 162.65 4 0.0

Read-Heavy 9 30.0 1 0.02 48.62 1 0.03 92.77 2 0.03 174.48 3 0.0

Read-Heavy 10 30.16 1 0.02 48.91 1 0.03 93.36 2 0.03 175.64 3 0.0

Read-Heavy 11 19.26 5 0.04 30.62 8 0.05 57.13 15 0.06 101.91 26 0.0

Read-Heavy 12 28.97 1 0.02 46.91 1 0.03 89.32 2 0.03 167.45 3 0.0

Read-Heavy 13 29.81 1 0.02 48.28 1 0.03 92.13 2 0.03 173.19 3 0.0

Read-Heavy 14 30.42 1 0.02 49.44 1 0.03 94.21 2 0.03 177.39 3 0.0

Read-Heavy 15 22.77 2 0.03 36.53 2 0.04 68.43 4 0.04 126.6 7 0.0

Read-Heavy 16 26.54 1 0.02 42.94 1 0.03 81.52 2 0.04 152.01 4 0.0

Read-Heavy 17 8.65 26 0.05 13.47 40 0.06 24.84 74 0.08 42.85 127 0.0

Read-Heavy 18 29.78 1 0.02 48.31 1 0.03 91.96 2 0.03 173.15 3 0.0

Read-Heavy 19 30.06 1 0.02 48.85 1 0.03 93.03 2 0.03 174.9 3 0.0

Read-Heavy 20 30.31 1 0.02 49.17 1 0.03 93.88 2 0.03 176.83 3 0.0

Read-Heavy 21 28.35 1 0.02 46.01 1 0.03 87.54 2 0.03 164.02 3 0.0

Read-Heavy 22 20.58 1 0.03 33.3 2 0.04 63.02 3 0.05 114.34 5 0.0

Read-Heavy 23 29.89 1 0.02 48.48 1 0.03 92.51 2 0.03 173.99 3 0.0

together despite the size and diversity of the training set, lower-

ing the reproduced model’s accuracy. Nonetheless, we created 2842

training queries as the original 3102 queries used were not available

after reaching out to the authors. We used a 1GB TPC-DS dataset

and also ran some queries on 100GB and 1TB datasets to get a

broader range of runtimes. We make a significant effort to replicate

the setup and create a runtime estimation method for SQL queries.

Inter-query plans using runtime estimates are 66% more expen-

sive than plans using profiles onW-Mixed in the A1→G setup and

13% more expensive in G→A1 when they cost the same as the base-

line. Noisy estimates result in Arachne missing valuable savings

opportunities and greatly diminish savings margins, illustrating

the detrimental impact of estimation on inter-query savings.

7 RELATEDWORK

Other Cloud Databases. Many other cloud and third-party data-

bases scan cloud storage like Snowflake, Azure Synapse, Trino,

Apache Hive, Amazon Athena, and SparkSQL [1, 2, 5, 10, 25, 57, 69].

These databases use per-second billing (Presto, Hive, SparkSQL),

per-byte billing (Athena), or some combination of the two. While

we could have used other systems in our evaluation, Google Big-

Query and AWS Redshift effectively represent both pricing models

across clouds, enabling us to evaluate opportunities O1–O2.

Cloud Cost Savings. Prior work on money savings focuses on

scheduling algorithms [73], exploring cost sources in different exe-

cution backends [65], or using S3 Select [39] to speed up queries

and lower costs [77]. Leis and Kuschewski model per-second costs

for cloud workloads [45]. Recent work has also focused on achiev-

ing savings using spot instances [75], minimizing network egress

prices [72], and finding cheaper configurations for cloud deploy-

ments [11]. To the best of our knowledge, Arachne is the first

effort to systematically explore savings opportunities for analytical

queries by using multiple databases with different pricing models.

Other Complementary Optimizations. Other prior work saves

money through semantic caching and distributed query optimiza-

tion techniques [26, 31, 43, 53], optimizing data placement [42, 55],

and view selection and materialization in data warehouses [7, 23,

51, 58]. These efforts save costs within a single pricing model and

can be applied to databases prior to our analysis across multiple

pricing models; for that reason they complement our research.

Cloud-Agnostic Query Execution. Recent position papers have

emphasized the need to build cloud-agnostic data infrastructure.

Berkeley’s Sky Computing vision outlines opportunities for multi-

cloud workload execution [21]. Our work on Arachne emphasizes

cost savings across pricing models.

Federated Query Execution. Some prior work improves per-

formance for federated queries by using metadata from federated

sources [20], by improving query planning for federated queries [33],

or by building full federated query systems [41]. These works do

not aim to save money and consider a single execution backend and

multiple storage endpoints, while Arachne uses multiple execution

backends with different pricing models to save money.

8 CONCLUSION

This paper presents, exploits, and evaluates two money saving

opportunities for cloud analytical workloads. The key is to schedule

queries based on the resources they consume onto beneficial pricing
models offered by cloud vendors. We measure hard-to-estimate

query information, implement the inter- and intra-query algorithms,

and use IaaS to save money, all while honoring runtime constraints.

We hope this work will encourage further investigation into

multi-cloud savings opportunities. Ideally, this line of work fosters

competition between cloud vendors, driving down prices and ben-

efiting users. Cloud vendors may, however, simply modify prices

to prevent data movement and lock-in users. Even in extreme sit-

uations multi-cloud opportunities exist, and we hope that cloud

vendors choose to reduce costs for users and pay for the revenue

loss by becoming more energy-efficient to lower internal costs.

REFERENCES

[1] Josep Aguilar-Saborit, Raghu Ramakrishnan, Krish Srinivasan, Kevin Bock-

srocker, Ioannis Alagiannis, Mahadevan Sankara, Moe Shafiei, Jose Blakeley,

Girish Dasarathy, Sumeet Dash, Lazar Davidovic, Maja Damjanic, Slobodan Dju-

nic, Nemanja Djurkic, Charles Feddersen, Cesar Galindo-Legaria, AlanHalverson,

Milana Kovacevic, Nikola Kicovic, Goran Lukic, Djordje Maksimovic, Ana Manic,

Nikola Markovic, Bosko Mihic, Ugljesa Milic, Marko Milojevic, Tapas Nayak,

Milan Potocnik, Milos Radic, Bozidar Radivojevic, Srikumar Rangarajan, Mi-

lan Ruzic, Milan Simic, Marko Sosic, Igor Stanko, Maja Stikic, Sasa Stanojkov,

Vukasin Stefanovic, Milos Sukovic, Aleksandar Tomic, Dragan Tomic, Steve

Toscano, Djordje Trifunovic, Veljko Vasic, Tomer Verona, Aleksandar Vujic,

Nikola Vujic, Marko Vukovic, and Marko Zivanovic. 2020. POLARIS: the dis-

tributed SQL engine in azure synapse. Proceedings of the VLDB Endowment 13,
12 (aug 2020), 3204–3216. https://doi.org/10.14778/3415478.3415545

[2] Amazon Athena [n.d.]. Amazon Athena - Serverless Interactive Query Service

- Amazon Web Services. Retrieved 2023-11-21 from https://aws.amazon.com/

athena/

[3] Apache Arrow [n.d.]. Apache Arrow. Retrieved 2024-02-13 from https://arrow.

apache.org

[4] Apache Parquet [n.d.]. Apache Parquet. Retrieved 2022-12-17 from https:

//parquet.apache.org/

[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei

Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-

bourne, Victoria, Australia) (SIGMOD ’15). Association for ComputingMachinery,

New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[6] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh

Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,

Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,

12

https://doi.org/10.14778/3415478.3415545
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/
https://arrow.apache.org
https://arrow.apache.org
https://parquet.apache.org/
https://parquet.apache.org/
https://doi.org/10.1145/2723372.2742797


Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Poly-

chroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subra-

manian, and Doug Terry. 2022. Amazon Redshift Re-invented. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,

2205–2217. https://doi.org/10.1145/3514221.3526045

[7] Auto-MV [n.d.]. Automated materialized views - Amazon Redshift. Retrieved

2023-04-02 from https://docs.aws.amazon.com/redshift/latest/dg/materialized-

view-auto-mv.html

[8] AWS Batch [n.d.]. What is Batch Processing? - Batch Processing Systems Ex-

plained - AWS. Retrieved 2023-04-02 from https://aws.amazon.com/what-

is/batch-processing/

[9] AWS Batch Processing [n.d.]. Batch data processing - Data Analytics Lens.

Retrieved 2024-01-07 from https://docs.aws.amazon.com/wellarchitected/latest/

analytics-lens/batch-data-processing.html

[10] Azure Synapse [n.d.]. Azure Synapse Analytics | Microsoft Azure. Retrieved

2023-11-21 from https://azure.microsoft.com/en-us/products/synapse-analytics/

[11] Tiemo Bang, Conor Power, Siavash Ameli, Natacha Crooks, and Joseph M. Heller-

stein. 2024. Optimizing the cloud? Don’t train models. Build oracles!. In 14th Con-
ference on Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA, Jan-
uary 14-17, 2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p47-

bang.pdf

[12] BatchExecuteStatement [n.d.]. BatchExecuteStatement. Retrieved 2024-02-

07 from https://docs.aws.amazon.com/redshift-data/latest/APIReference/API_

BatchExecuteStatement.html

[13] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and

Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized

Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 221–230. https:

//doi.org/10.1145/3183713.3190662

[14] BigQuery [n.d.]. What is BigQuery? Retrieved 2023-11-21 from https://cloud.

google.com/bigquery/docs/introduction

[15] BigQuery analytics [n.d.]. Overview of BigQuery analytics. Retrieved 2024-01-07

from https://cloud.google.com/bigquery/docs/query-overview

[16] BigQuery Optimizing [n.d.]. Introduction to optimizing query performance |

BigQuery. Retrieved 2023-04-14 from https://cloud.google.com/bigquery/docs/

best-practices-performance-overview

[17] BigQuery Pricing Change [n.d.]. Introducing new BigQuery pricing editions. Re-

trieved 2023-04-09 from https://cloud.google.com/blog/products/data-analytics/

introducing-new-bigquery-pricing-editions

[18] BigQuery Reliability [n.d.]. Understand reliability | BigQuery. Retrieved

2024-02-11 from https://cloud.google.com/bigquery/docs/reliability-intro#real-

time_analytics

[19] Ranjan Burman, Amit Nayak, Bosco Albuquerque, and Nita Shah. 2022.

Best practices to optimize your Amazon Redshift and MicroStrat-

egy deployment | AWS Big Data Blog. Retrieved 2023-04-14 from

https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-your-

amazon-redshift-and-microstrategy-deployment/

[20] Angelos Charalambidis, Antonis Troumpoukis, and Stasinos Konstantopoulos.

2015. SemaGrow: optimizing federated SPARQL queries. In Proceedings of the
11th International Conference on Semantic Systems (Vienna, Austria) (SEMANTICS
’15). Association for Computing Machinery, New York, NY, USA, 121–128. https:

//doi.org/10.1145/2814864.2814886

[21] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali Ghodsi, Ken Goldberg,

Joseph E. Gonzalez, Joseph M. Hellerstein, Michael I. Jordan, Anthony D. Joseph,

Michael W. Mahoney, Aditya Parameswaran, David Patterson, Raluca Ada Popa,

Koushik Sen, Scott Shenker, Dawn Song, and Ion Stoica. 2022. The Sky Above

The Clouds. arXiv:2205.07147 [cs.DC] https://arxiv.org/abs/2205.07147

[22] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1999. On Random

Sampling over Joins. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data (Philadelphia, Pennsylvania, USA) (SIGMOD
’99). Association for Computing Machinery, New York, NY, USA, 263–274. https:

//doi.org/10.1145/304182.304206

[23] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. 2002. A formal perspective on the

view selection problem. The VLDB Journal The International Journal on Very Large
Data Bases 11, 3 (Nov. 2002), 216–237. https://doi.org/10.1007/s00778-002-0070-0

[24] CloudZero. [n.d.]. Meet Our Customers | CloudZero. Retrieved 2023-11-20 from

https://www.cloudzero.com/customers

[25] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.

The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:

//doi.org/10.1145/2882903.2903741

[26] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava, and Michael

Tan. 1996. Semantic Data Caching and Replacement. In Proceedings of the 22th

International Conference on Very Large Data Bases (VLDB ’96). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 330–341.

[27] Dashboard [n.d.]. Real-World Examples of Business Intelligence (BI) Dashboards.

Retrieved 2023-04-09 from https://www.tableau.com/learn/articles/business-

intelligence-dashboards-examples

[28] Databricks Data Lakes [n.d.]. Introduction to Data Lakes. Retrieved 2023-04-14

from https://www.databricks.com/discover/data-lakes

[29] Bappaditya Datta. 2022. Data warehouse and business intelligence

technology consolidation using AWS. Retrieved 2024-01-07 from

https://aws.amazon.com/blogs/architecture/data-warehouse-and-business-

intelligence-technology-consolidation-using-aws/

[30] Yefim Dinitz. 2006. Dinitz’ Algorithm: The Original Version and Even’s Version.
Springer Berlin Heidelberg, Berlin, Heidelberg, 218–240. https://doi.org/10.1007/

11685654_10

[31] Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: a unified

cache storage system for analytical databases. Proceedings of the VLDB Endow-
ment 14, 11 (July 2021), 2432–2444. https://doi.org/10.14778/3476249.3476292

[32] Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algo-

rithmic efficiency for network flow problems. Journal of the ACM (JACM) 19, 2
(1972), 248–264.

[33] Stephan Ewen, Holger Kache, Volker Markl, and Vijayshankar Raman. 2006.

Progressive Query Optimization for Federated Queries. In Advances in Database
Technology - EDBT 2006, Yannis Ioannidis, Marc H. Scholl, Joachim W. Schmidt,

Florian Matthes, Mike Hatzopoulos, Klemens Boehm, Alfons Kemper, Torsten

Grust, and Christian Boehm (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

847–864.

[34] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Armando

Fox, Michael Jordan, and David Patterson. 2009. Predicting Multiple Metrics

for Queries: Better Decisions Enabled by Machine Learning. In 2009 IEEE 25th
International Conference on Data Engineering. 592–603. https://doi.org/10.1109/

ICDE.2009.130

[35] Kevin Goff. [n.d.]. The Baker’s Dozen: 13 Tips for Better Extract/Transform/Load

(ETL) Practices in Data Warehousing (Part 1 of 2). Retrieved 2023-04-09

from https://www.codemag.com/article/1709051/The-Baker%E2%80%99s-

Dozen-13-Tips-for-Better-Extract-Transform-Load-ETL-Practices-in-Data-

Warehousing-Part-1-of-2

[36] Google BigQuery Storage Pricing [n.d.]. Pricing | BigQuery: Cloud Data Ware-

house. Retrieved 2023-04-14 from https://cloud.google.com/bigquery/pricing

[37] Google ETL [n.d.]. What is ETL? Retrieved 2023-04-09 from https://cloud.

google.com/learn/what-is-etl

[38] T. Heller, S. O. Krumke, and K. H. Küfer. 2021. The Reward-Penalty-Selection

Problem. arXiv:2106.14601 [cs.CC] https://arxiv.org/abs/2106.14601

[39] Randall Hunt. 2017. S3 Select and Glacier Select – Retrieving Subsets of Objects

| AWS News Blog. Retrieved 2023-11-21 from https://aws.amazon.com/blogs/

aws/s3-glacier-select/

[40] IBM Serial Batch [n.d.]. What is a workload? Retrieved 2024-02-07 from

https://www.ibm.com/topics/workload

[41] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. 2002. Garlic: a new

flavor of federated query processing for DB2. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (Madison, Wiscon-

sin) (SIGMOD ’02). Association for Computing Machinery, New York, NY, USA,

524–532. https://doi.org/10.1145/564691.564751

[42] Donald Kossmann, Michael J. Franklin, Gerhard Drasch, andWig Ag. 2000. Cache

investment: integrating query optimization and distributed data placement. ACM
Transactions on Database Systems 25, 4 (Dec. 2000), 517–558. https://doi.org/10.

1145/377674.377677

[43] Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: a dynamic view man-

agement system for data warehouses. ACM SIGMOD Record 28, 2 (June 1999),

371–382. https://doi.org/10.1145/304181.304215

[44] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
of the VLDB Endowment 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/

2850583.2850594

[45] Viktor Leis and Maximilian Kuschewski. 2021. Towards cost-optimal query

processing in the cloud. Proceedings of the VLDB Endowment 14, 9 (May 2021),

1606–1612. https://doi.org/10.14778/3461535.3461549

[46] Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, and Yi Yao. 2019. Ab-

stract cost models for distributed data-intensive computations. Distributed and
Parallel Databases 37, 3 (Sept. 2019), 411–439. https://doi.org/10.1007/s10619-

018-7244-2

[47] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. 2021. Combining

Aggregation and Sampling (Nearly) Optimally for Approximate Query Process-

ing. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery,

New York, NY, USA, 1129–1141. https://doi.org/10.1145/3448016.3457277

[48] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? – ACM SIGMOD

Blog. Retrieved 2022-12-19 from http://wp.sigmod.org/?p=1075

13

https://doi.org/10.1145/3514221.3526045
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-mv.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-mv.html
https://aws.amazon.com/what-is/batch-processing/
https://aws.amazon.com/what-is/batch-processing/
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/batch-data-processing.html
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/batch-data-processing.html
https://azure.microsoft.com/en-us/products/synapse-analytics/
https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf
https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf
https://docs.aws.amazon.com/redshift-data/latest/APIReference/API_BatchExecuteStatement.html
https://docs.aws.amazon.com/redshift-data/latest/APIReference/API_BatchExecuteStatement.html
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/bigquery/docs/query-overview
https://cloud.google.com/bigquery/docs/best-practices-performance-overview
https://cloud.google.com/bigquery/docs/best-practices-performance-overview
https://cloud.google.com/blog/products/data-analytics/introducing-new-bigquery-pricing-editions
https://cloud.google.com/blog/products/data-analytics/introducing-new-bigquery-pricing-editions
https://cloud.google.com/bigquery/docs/reliability-intro#real-time_analytics
https://cloud.google.com/bigquery/docs/reliability-intro#real-time_analytics
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-your-amazon-redshift-and-microstrategy-deployment/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-your-amazon-redshift-and-microstrategy-deployment/
https://doi.org/10.1145/2814864.2814886
https://doi.org/10.1145/2814864.2814886
https://arxiv.org/abs/2205.07147
https://arxiv.org/abs/2205.07147
https://doi.org/10.1145/304182.304206
https://doi.org/10.1145/304182.304206
https://doi.org/10.1007/s00778-002-0070-0
https://www.cloudzero.com/customers
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://www.tableau.com/learn/articles/business-intelligence-dashboards-examples
https://www.tableau.com/learn/articles/business-intelligence-dashboards-examples
https://www.databricks.com/discover/data-lakes
https://aws.amazon.com/blogs/architecture/data-warehouse-and-business-intelligence-technology-consolidation-using-aws/
https://aws.amazon.com/blogs/architecture/data-warehouse-and-business-intelligence-technology-consolidation-using-aws/
https://doi.org/10.1007/11685654_10
https://doi.org/10.1007/11685654_10
https://doi.org/10.14778/3476249.3476292
https://doi.org/10.1109/ICDE.2009.130
https://doi.org/10.1109/ICDE.2009.130
https://www.codemag.com/article/1709051/The-Baker%E2%80%99s-Dozen-13-Tips-for-Better-Extract-Transform-Load-ETL-Practices-in-Data-Warehousing-Part-1-of-2
https://www.codemag.com/article/1709051/The-Baker%E2%80%99s-Dozen-13-Tips-for-Better-Extract-Transform-Load-ETL-Practices-in-Data-Warehousing-Part-1-of-2
https://www.codemag.com/article/1709051/The-Baker%E2%80%99s-Dozen-13-Tips-for-Better-Extract-Transform-Load-ETL-Practices-in-Data-Warehousing-Part-1-of-2
https://cloud.google.com/bigquery/pricing
https://cloud.google.com/learn/what-is-etl
https://cloud.google.com/learn/what-is-etl
https://arxiv.org/abs/2106.14601
https://arxiv.org/abs/2106.14601
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://www.ibm.com/topics/workload
https://doi.org/10.1145/564691.564751
https://doi.org/10.1145/377674.377677
https://doi.org/10.1145/377674.377677
https://doi.org/10.1145/304181.304215
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3461535.3461549
https://doi.org/10.1007/s10619-018-7244-2
https://doi.org/10.1007/s10619-018-7244-2
https://doi.org/10.1145/3448016.3457277
http://wp.sigmod.org/?p=1075


[49] John Martinez. 2021. 50 Years Of ETL: Can SQL For ETL Be Replaced? Retrieved

2023-04-09 from https://www.datanami.com/2021/05/06/50-years-of-etl-can-sql-

for-etl-be-replaced/

[50] McKinsey [n.d.]. Cloud cost-optimization simulator | McKinsey. Retrieved

2023-11-20 from https://www.mckinsey.com/capabilities/mckinsey-digital/our-

insights/cloud-cost-optimization-simulator

[51] Thomas P. Nadeau and Toby J. Teorey. 2002. Achieving scalability in OLAP

materialized view selection. In Proceedings of the 5th ACM International Work-
shop on Data Warehousing and OLAP (McLean, Virginia, USA) (DOLAP ’02).
Association for Computing Machinery, New York, NY, USA, 28–34. https:

//doi.org/10.1145/583890.583895

[52] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS..

In VLDB (Seoul, Korea) (VLDB ’06), Vol. 6. 1049–1058.
[53] Luis L. Perez and Christopher M. Jermaine. 2014. History-aware query op-

timization with materialized intermediate views. In 2014 IEEE 30th Interna-
tional Conference on Data Engineering. IEEE, Chicago, IL, USA, 520–531. https:

//doi.org/10.1109/ICDE.2014.6816678

[54] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019.

How I Learned to Stop Worrying and Love Re-optimization. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). 1758–1761. https://doi.org/

10.1109/ICDE.2019.00191

[55] Orestis Polychroniou, Wangda Zhang, and Kenneth A. Ross. 2018. Distributed

Joins and Data Placement for Minimal Network Traffic. ACM Transactions on
Database Systems 43, 3 (Nov. 2018), 1–45. https://doi.org/10.1145/3241039

[56] Avijit Prasad. 2022. Data lakes - Azure Architecture Center. Retrieved 2023-

04-14 from https://learn.microsoft.com/en-us/azure/architecture/data-guide/

scenarios/data-lake

[57] Presto [n.d.]. Presto: Free, Open-Source SQL Query Engine for any Data. Re-

trieved 2023-11-21 from http://prestodb.github.io/

[58] Redshift Spectrum [n.d.]. Spectrum performance caching and performance

| AWS re:Post. Retrieved 2023-04-02 from https://repost.aws/questions/

QUaVNX2NJ0REm95-dhZY4O5A/spectrum-performance-caching-and-

performance

[59] Matt Scaer, Manish Vazirani, and Tarun Chaudhary. 2020. Top 10 performance

tuning techniques for Amazon Redshift | AWS Big Data Blog. Retrieved 2023-

04-14 from https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-

techniques-for-amazon-redshift/

[60] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and

Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Interna-
tional Conference on Data Engineering (ICDE). IEEE, Macao, Macao, 1802–1813.

https://doi.org/10.1109/ICDE.2019.00196

[61] Pathik Sharma and James Fu. [n.d.]. Cost optimization best practices for Big-

Query. Retrieved 2023-04-14 from https://cloud.google.com/blog/products/data-

analytics/cost-optimization-best-practices-for-bigquery

[62] Snappy [n.d.]. snappy. Retrieved 2022-12-29 from http://google.github.io/

snappy/

[63] Snowflake ETL [n.d.]. The Pitfalls of ETL Processing. Retrieved 2023-04-09

from https://www.snowflake.com/guides/pitfalls-etl-processing

[64] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,

Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC Social Network

Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (dec 2022),
877–890. https://doi.org/10.14778/3574245.3574270

[65] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stone-

braker, David DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska. 2019.

Choosing a cloud DBMS: architectures and tradeoffs. Proc. VLDB Endow. 12, 12
(aug 2019), 2170–2182. https://doi.org/10.14778/3352063.3352133

[66] Zoiner Tejada. [n.d.]. Online analytical processing (OLAP) - Azure Architecture

Center. Retrieved 2024-01-07 from https://learn.microsoft.com/en-us/azure/

architecture/data-guide/relational-data/online-analytical-processing

[67] The Duckbill Group [n.d.]. Duckbill. Retrieved 2023-11-20 from https://www.

duckbillgroup.com/

[68] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive - a

petabyte scale data warehouse using Hadoop. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). IEEE, Long Beach, CA, USA, 996–
1005. https://doi.org/10.1109/ICDE.2010.5447738

[69] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive - a

petabyte scale data warehouse using Hadoop. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). IEEE, Long Beach, CA, USA, 996–
1005. https://doi.org/10.1109/ICDE.2010.5447738

[70] TPC-DS [n.d.]. TPC Benchmark DS. Retrieved 2024-02-13 from https://www.

tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf

[71] What is OLAP? [n.d.]. What is Online Analytical Processing? - Online Analytical

Processing Explained - AWS. Retrieved 2024-01-07 from https://aws.amazon.

com/what-is/olap/

[72] Sarah Wooders, Shu Liu, Paras Jain, Xiangxi Mo, Joseph E. Gonzalez, Vincent

Liu, and Ion Stoica. 2024. Cloudcast: High-Throughput, Cost-Aware Overlay

Multicast in the Cloud. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 281–296.

https://www.usenix.org/conference/nsdi24/presentation/wooders

[73] Fuhui Wu, Qingbo Wu, and Yusong Tan. 2015. Workflow scheduling in cloud:

a survey. The Journal of Supercomputing 71, 9 (Sept. 2015), 3373–3418. https:

//doi.org/10.1007/s11227-015-1438-4

[74] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüs,

and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer

cost models really unusable?. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). 1081–1092. https://doi.org/10.1109/ICDE.2013.6544899

[75] Zhanghao Wu, Wei-Lin Chiang, Ziming Mao, Zongheng Yang, Eric Friedman,

Scott Shenker, and Ion Stoica. 2024. Can’t Be Late: Optimizing Spot Instance

Savings under Deadlines. In 21st USENIX Symposium onNetworked Systems Design
and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 185–203.

https://www.usenix.org/conference/nsdi24/presentation/wu-zhanghao

[76] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.

2019. Deep unsupervised cardinality estimation. Proc. VLDB Endow. 13, 3 (nov
2019), 279–292. https://doi.org/10.14778/3368289.3368294

[77] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-

afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-

ating a DBMS Using S3 Computation. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). 1802–1805. https://doi.org/10.1109/ICDE48307.2020.

00174

14

https://www.datanami.com/2021/05/06/50-years-of-etl-can-sql-for-etl-be-replaced/
https://www.datanami.com/2021/05/06/50-years-of-etl-can-sql-for-etl-be-replaced/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/cloud-cost-optimization-simulator
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/cloud-cost-optimization-simulator
https://doi.org/10.1145/583890.583895
https://doi.org/10.1145/583890.583895
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1109/ICDE.2019.00191
https://doi.org/10.1109/ICDE.2019.00191
https://doi.org/10.1145/3241039
https://learn.microsoft.com/en-us/azure/architecture/data-guide/scenarios/data-lake
https://learn.microsoft.com/en-us/azure/architecture/data-guide/scenarios/data-lake
http://prestodb.github.io/
https://repost.aws/questions/QUaVNX2NJ0REm95-dhZY4O5A/spectrum-performance-caching-and-performance
https://repost.aws/questions/QUaVNX2NJ0REm95-dhZY4O5A/spectrum-performance-caching-and-performance
https://repost.aws/questions/QUaVNX2NJ0REm95-dhZY4O5A/spectrum-performance-caching-and-performance
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-techniques-for-amazon-redshift/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-techniques-for-amazon-redshift/
https://doi.org/10.1109/ICDE.2019.00196
https://cloud.google.com/blog/products/data-analytics/cost-optimization-best-practices-for-bigquery
https://cloud.google.com/blog/products/data-analytics/cost-optimization-best-practices-for-bigquery
http://google.github.io/snappy/
http://google.github.io/snappy/
https://www.snowflake.com/guides/pitfalls-etl-processing
https://doi.org/10.14778/3574245.3574270
https://doi.org/10.14778/3352063.3352133
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing
https://www.duckbillgroup.com/
https://www.duckbillgroup.com/
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICDE.2010.5447738
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://aws.amazon.com/what-is/olap/
https://aws.amazon.com/what-is/olap/
https://www.usenix.org/conference/nsdi24/presentation/wooders
https://doi.org/10.1007/s11227-015-1438-4
https://doi.org/10.1007/s11227-015-1438-4
https://doi.org/10.1109/ICDE.2013.6544899
https://www.usenix.org/conference/nsdi24/presentation/wu-zhanghao
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1109/ICDE48307.2020.00174
https://doi.org/10.1109/ICDE48307.2020.00174

	Abstract
	1 Introduction
	2 Background and Opportunities
	2.1 Executing Analytics Workloads in the Cloud
	2.2 Cost Saving Opportunity and Challenges
	2.3 Problem Statement and Approach

	3 Inter-Query Execution Plan
	3.1 Algorithmic Setup and Goal
	3.2 Inter-Query Algorithm

	4 Intra-Query Execution Plan
	4.1 Algorithmic Setup and Goal
	4.2 Identifying Profitable Cuts
	4.3 Intra-Query Algorithm

	5 Arachne Overview
	5.1 Overview
	5.2 Profiler Module
	5.3 Cost-Relevant Implementation Details

	6 Evaluation
	6.1 Workloads
	6.2 Experimental Setup
	6.3 RQ1. Inter-Query Processing
	6.4 RQ2. Intra-Query Processing
	6.5 RQ3. Simulating Different Cloud Costs
	6.6 RQ4: Profiling Cost Microbenchmarks

	7 Related Work
	8 Conclusion
	References

