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ABSTRACT
Pooling and sharing data increases and distributes its value. But
since data cannot be revoked once shared, scenarios that require
controlled release of data for regulatory, privacy, and legal reasons
default to not sharing. Because selectively controlling what data
to release is difficult, the few data-sharing consortia that exist are
often built around data-sharing agreements resulting from long
and tedious one-off negotiations.

We introduce Data Station, a data escrow designed to enable the
formation of data-sharing consortia. Data owners share data with
the escrow knowing it will not be released without their consent.
Data users delegate their computation to the escrow. The data es-
crow relies on delegated computation to execute queries without
releasing the data first. Data Station leverages hardware enclaves to
generate trust among participants, and exploits the centralization
of data and computation to generate an audit log.

We evaluate Data Station on machine learning and data-sharing
applications while running on an untrusted intermediary. In ad-
dition to important qualitative advantages, we show that Data
Station: i) outperforms federated learning baselines in accuracy
and runtime for the machine learning application; ii) is orders of
magnitude faster than alternative secure data-sharing frameworks;
and iii) introduces small overhead on the critical path.

PVLDB Reference Format:
Siyuan Xia, Zhiru Zhu, Chris Zhu, Jinjin Zhao, Kyle Chard, Aaron J.
Elmore, Ian Foster, Michael Franklin, Sanjay Krishnan, Raul Castro
Fernandez. Data Station: Delegated, Trustworthy, and Auditable
Computation to Enable Data-Sharing Consortia with a Data Escrow.
PVLDB, 15(11): 3172 - 3185, 2022.
doi:10.14778/3551793.3551861

1 INTRODUCTION
Pooling and sharing data increases and distributes its value. Orga-
nizations that pool their data can build and mutually benefit from
more powerful machine learning models [34]. Health organizations
that share data with each other can improve patient care [42]. And,
researchers who share experimental data can accelerate scientific
discovery [55]. Despite the obvious advantages, few data-sharing
consortia form in practice. Many organizations that could benefit
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from data sharing face regulatory, legal, privacy, incentive, and
technical barriers, and thus, can only release selected data in a
controlled manner [4, 13]. Technically speaking, controlling how
data is used is difficult, so many beneficial data-sharing consortia
never materialize. Those that do are often built around data-sharing
agreements resulting from long and tedious one-off negotiations
that are inflexible to later changes in how data should be used.

In this paper, we introduce Data Station, an intermediary data
escrow, the computational and data management infrastructure
designed to enable the formation of data-sharing consortia. Data
owners share data with the escrow as if it was an extension of their
own infrastructure, i.e., it can be guaranteed that their data will
remain confidential and that no one will access it (or any derived
insights) without their explicit permission. Data users who want to
extract insights from data delegate their computation to the escrow,
and that computation will be executed only if permitted by the
data owners. The escrow ensures that all data is protected, makes
few assumptions on the threat model, and thus, allows owners and
users to trust it. Finally, because many sharing scenarios involve
regulatory and compliance requirements, all computation that takes
place on the platform must be transparent so third-party auditors
and compliance officers can audit the consortia.

1.1 Data Sharing Scenarios
We offer stylized scenarios based on examples of real applications
to illustrate the opportunities of enabling data-sharing consortia.

1.1.1 Data Sharing Within Organizations: Team Consortia. When
analysts set out to solve a data task, such as building a machine
learning model, or extracting the results of a query to complete
a report, they have to find relevant data among a myriad of data
sources within their organization [17]. Unfortunately, many of these
data sources are siloed and are managed by individual data owners
whose responsibility is to control who accesses the data. This in-
troduces an important challenge. Analysts do not necessarily know
whether a dataset is useful for their task before seeing it, so they
must work with owners in time-consuming one-off negotiations
to understand the dataset and negotiate access. Furthermore, even
after securing access to a dataset, analysts may find that it is incom-
plete or poorly described, or that access to additional datasets is
necessary, producing a back and forth cycle that increases the time
to insights. In short, even within an organization, analysts must
invest a significant upfront cost to determine if data is useful. Own-
ers must resort to conversations with the analysts to understand
whether data access should be granted.

What would help in this scenario is a platform that permits
evaluation of the analysts’ tasks on the owners’ datawithout owners
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having to release the data first. A data escrow would enable owners
and users to address the problem while also allowing compliance
officers to audit how employees are using data assets and rapidly
detect misuse, e.g., training ML models over sensitive attributes.

1.1.2 Data Sharing Across Organizations: Organization Consortia.
Many organizations would mutually benefit from pooling their
data to train better machine learning models, but they are wary of
sharing their raw datasets. For example, chemical engineering or-
ganizations may be willing to pool expensive-to-obtain simulation
data to train more powerful models and find better materials [12],
but they do not want other organizations to see the data they pos-
sess. They would be comfortable sharing inferences over a model
trained on everybody’s data, but there is no easy solution to orches-
trate such data-sharing consortia that does not leak information
about their individual datasets. Despite the benefits of sharing, the
consequence of the above risks is that organizations do not share
data and the value remains untapped.

What is needed is a platform that combines each participant’s
data without releasing it to anyone, trains a model, and selectively
allows participants to access model inferences. Such a platform will
help organizations pool their data and unleash its value.

1.2 The Data Station System
The main contribution is Data Station, a new data escrow system
that enables delegated, trustworthy, and auditable computation.
Delegated Computation. Today, data access and processing are
intertwined. To run computation, one has to access the data first.
However, as data sharing is constrained by the barriers described in
the examples, no computation takes place and no value is extracted.
Data Station acts as an escrow to whom data owners send their data
and data users send their computation. Delegating computation
to Data Station means the Station can promise to protect data,
i.e., no data or derived data products will be released without the
data owners’ explicit consent. Further, this model stops users from
paying upfront costs to access data and allows them to concentrate
on gaining access to their query results instead.
Trustworthy Computation. The introduction of an escrow en-
ables data sharing as long as both owners and users trust it to
keep their data secured. Users must trust that the escrow runs their
computation securely and does not leak it to other participants.
Owners must trust the escrow to honor their access preferences.
Eliciting trust requires different mechanisms that depend on the
threat model. Data Station implements a full-trust mode: useful in
situations such as when employees perform data discovery within
their own organization, that runs the intermediary; and near-zero-
trust mode: useful in cases such as when independent organizations
want to pool their data using a third-party intermediary. To imple-
ment these mechanisms, Data Station leverages secure hardware
enclave technology [29] and cryptographic techniques. Unlike con-
fidential computing approaches [5, 6, 9, 35] geared towards letting
a user run computation on their own data but on a third-party
infrastructure, e.g., a cloud vendor, Data Station is designed to run
computation on data from multiple parties.
Auditable Computation. Many challenging data-sharing scenar-
ios are regulated and subject to compliance and audit rules [15]. In

these cases, even if owners and users trust each other, the compu-
tation they perform on data must be transparent to third parties,
such as compliance officers and auditors. Data Station exploits the
centralization of data and compute in the platform to record all com-
putation in a tamper-proof immutable log. Every attempt to access
data, every running task, as well as the data access preferences of
data owners are stored in the log. This log lets authorized auditors
verify that the tasks Data Station runs follow the compliance rules
and regulations that govern the data.
Contribution and Evaluation Results. To the best of our knowl-
edge, Data Station is the first data escrow system designed to enable
data-sharing. In the evaluation, we show two sharing applications
enabled by Data Station. First, we show that compared to a fed-
erated learning deployment, Data Station achieves much higher
accuracy in a small portion of the time for several learning tasks.
Second, we show how Data Station has up to two orders of mag-
nitude lower overhead than alternative technologies that support
end-to-end encryption, thus enabling a wider range of applications.
Finally, we emphasize the qualitative advantages of Data Station
and conduct a thorough evaluation of its overheads.
Focus of this Paper. Successfully forming data-sharing consor-
tia requires consideration of aspects such as privacy constraints,
regulations, legal data-sharing agreements, incentives among par-
ticipants, and more. All these issues are important, but they matter
only if there is a technical solution to share data in the first place.
Data Station is designed to tackle the technical challenge.

The rest of the paper is organized as follows. Section 2 gives
an overview of Data Station. Section 3 explains how Data Station
achieves the goals of delegated and auditable computation. Sec-
tion 4 explains how to support the near-zero-trust mode. Section 5
introduces the design and implementation of an execution envi-
ronment for Data Station. Section 6 presents evaluation results,
Section 7 the related work, and Section 8 the conclusions.

2 DATA STATION OVERVIEW
We present the abstractions used by Data Station in Section 2.1,
the sharing lifecycle in Section 2.2 and the computation lifecycle
in Section 2.3. Then, we state the promise Data Station makes in
Section 2.4, and overview its architecture in Section 2.5.

2.1 Agents, Data Elements, Functions
An agent 𝑎𝑖 ∈ A is any entity that interacts with Data Station.
There are three types of agents. Owners control access to data assets
they own. It may be beneficial to share these data assets with other
agents, so owners will be willing to register them with Data Station.
Registering a data asset with Data Station copies the data from
the owners’ infrastructure to Data Station’s infrastructure. Users
are agents who want to run computation on data that is registered
with Data Station. Finally, operators are neither owners or users,
but they want to understand what computation is running on what
data inside Data Station. Auditors, compliance officers, and other
kinds of regulators may play the role of operators.

Any registered data asset is represented in Data Station as a data
element (DE), 𝑑𝑖 . DEs include data of different types and granulari-
ties, such as relations, databases, files, images, and more.



All computation in Data Station is represented via functions,
𝑓 ∈ F . Data Station provides some basic functions, but most func-
tions are provided by owners and users planning to form a sharing
consortia, e.g., a coalition of chemical engineers may provide spe-
cialized indexes and search functionality for molecular data. These
functions are exposed in Data Station via 𝑓 ∈ F . Functions take
input parameters and DEs as input and produce other DEs and
optionally other side effects, such as logs and temporal files, e.g.,
a train function takes input DEs as training data and produces a
model. No function side effect is visible to users. It follows that
functions should run end-to-end. Providing a suite of functions to
prepare and integrate data using the escrow is possible, but that
requires solving additional challenges out of the scope of this paper.

2.2 Policies and Sharing Modes
Owners register DEs with the Station with the intention of eventu-
ally letting some computation run on that data. Owners fully control
for what purposes Data Station accesses the data they register via
policies and sharing modes.
Policies. A policy is a triple, 𝑎𝑖 , 𝑓𝑖 , 𝑑𝑖 that indicates that agent 𝑎𝑖
can run function 𝑓𝑖 on DE 𝑑𝑖 . In contrast to access control policies
that broker low-level operations to files, such as read, write, and
execution permissions in the context ofMAC in Unix-based systems,
a policy in Data Station indicates what functions can run on what
DEs, so it is a higher-level description.
Sharing Modes. There are three sharing modes that indicate what
types of data access are available: sealed, enclave, open. In the sealed
mode, a registered DE cannot be used by any function or by Data
Station unless there is an explicit policy permitting such access.
When there are no policies, owners who register a DE in sealed
mode can think of Data Station as a mere extension of their own
infrastructure, because no computation can take place and the
existence of the DE is not disclosed to anyone.

In enclave mode, Data Station can run functions on the DE, but
no output will be released without explicit consent from the owner,
i.e., without an explicit policy permitting the release of the results.
This mode permits Data Station to perform tasks such as index
creation, profiling, training models, and more, while guaranteeing
that no information is released to anyone.

Finally, we say a DE, 𝑑 𝑗 is in open mode for a given agent 𝑎𝑖
when there is a policy that includes 𝑎𝑖 and 𝑑 𝑗 .
Lifecycle. A data owner may initially register a DE in sealed mode,
but owners register DEs with the intention of eventually allowing
users to benefit from their existence. Owners may keep DEs in
sealed mode and write policies to describe with fine-granularity
who can run what computation on their data. This is useful, e.g.,
when allowing a third-party to test a piece of software on their
data, or for secure data exchange via an intermediary. In other
scenarios, owners may set the DEs to enclave mode, letting Data
Station run computation on them while keeping results private.
This is useful to, e.g., build indexes that permit users to discover
relevant DEs but ensuring the actual data is never released without
explicit consent from the owners. Ultimately, for a DE or derived
data product to leave the Station, the data owner must have written
a policy explicitly, so that the DE is in open mode.

2.3 Computation Lifecycle
Users invoke functions pre-registered in the Station, 𝑓𝑖 ∈ F . A func-
tion invocation triggers the creation of intents, which are triples
defined analogously to policies 𝑎𝑖 , 𝑓𝑖 , 𝑑𝑖 and that indicate the inten-
tion of agent 𝑎𝑖 to execute function 𝑓𝑖 on DE 𝑑𝑖 . Intents are never
created over sealed DEs unless there is a policy that permits the
execution of that function. Sealed DEs are invisible to functions.

We differentiate between two broad classes of functions, data-
blind and data-aware functions. The first kind does not require
knowledge of any DE in Data Station. For example, search and
query-by-example functions take input from a user who does not
need to know about any DE. In contrast, data-aware functions take
as a parameter a set of DEs. For example, a copy/download function
needs to indicate what DE to download. It follows that no user can
call data-aware functions on (effectively invisible) sealed DEs.
Derived Data Products.When a function runs on a DE and pro-
duces an output, we call this output a derived data product. A derived
data product is another DE that resides inside Data Station. Hence,
DEs can be uploaded by their owners, or produced by functions. De-
rived data products are a key ingredient of delegated computation,
as they are the results for which users come to Data Station. One
key challenge Data Station must solve is to apply policies created
on DEs registered by owners to derived data products, even when
these may have been derived from DEs owned by different owners.

2.4 Data Station’s Promise and Trust Modes
Data Station promises owners that only DEs, including derived data
products, that are in open mode ever leave Data Station. Further-
more, it promises owners that any activity involving DEs they own
is recorded and visible to them on-demand.

Maintaining the guarantee requires different protocols, algo-
rithms, and even infrastructure depending on the threat model. For
example, when Data Station runs inside an organization to enable
their employees to discover data assets owned by other teams, a
reasonable threat model may be that the infrastructure where Data
Station is deployed is non-adversarial, that DEs will be kept in their
original sharing mode, and that the implementation follows the
promise as specified. In contrast, when Data Station runs on third-
party infrastructure, it must ensure the promise is kept in a more
challenging threat model. Data Station operates on different modes
to guarantee the promise under different threat models. Agents
consider Data Station trustworthy when it keeps the promise under
their target threat model.

2.5 Architecture Overview
An overview of Data Station architecture is shown in Fig. 1. Exist-
ing applications can be registered with Data Station via the App
Register component that tells the Gatekeeper what functions are
available for execution. Once registered, data users can invoke those
functions using various interfaces that use the Agent APIs com-
ponent. All function invocations are brokered by the Gatekeeper,
which checks with the Policy Broker if the invocation can proceed,
according to the policies present for the data involved and the re-
spective sharing mode. Such policies are written by data owners
using the Agent APIs. If the execution can proceed, the Gatekeeper
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Figure 1: High-level overview of Data Station architecture

instantiates a task to execute that application, all using the exe-
cution environment, where the application runs in isolation. All
accesses to the Storage Manager—whether to access existing data
or to store derived data products or any other temporary data—is
mediated by an Interceptor component. Finally, to support opera-
tion under different threat models, Data Station uses a Volatile Key
Manager and a Protocol Coordinator that we describe later.

3 DELEGATED, AUDITABLE COMPUTATION
We introduce the main components of Data Station that permit
delegated and auditable computation. In this section, we assume
both owners and users trust the infrastructure, the function imple-
mentation, and the administrators who maintain the platform. We
relax these assumptions in Section 4.
Goal. The primary goal of Data Station is to run functions invoked
by users on data supplied by owners in a way that satisfies owners’
sharing preferences, i.e., keeping Data Station’s promise.

3.1 Gatekeeper In Depth
After a function invocation, Data Station identifies what DEs are
accessible to the function, including derived data products. The
Gatekeeper acts as a single-point-of-entry for all function invoca-
tions. Thus, it orchestrates all necessary steps to serve function
calls while maintaining Data Station’s promise. Users can only in-
voke functions exposed by theGatekeeper. Functions are registered
with the Gatekeeper through an application registration process
(Section 5). Deciding what DEs are available to a function involves
a different process for data-aware and data-blind functions.
Brokering Data-aware Functions. Data-aware functions request
access to specific DEs via paths, names, or other identifiers. Ahead
of executing the function, the Gatekeeper creates the correspond-
ing intents by using the calling agent id, 𝑎𝑖 , the function being
invoked, 𝑓𝑗 , and the DE being accessed, 𝑑𝑘 . The Gatekeeper cre-
ates an intent per DE involved. Then, it uses the Policy Broker to
determine whether the intents have matching policies. The Policy
Broker component is backed up by a database that contains all
agents, functions, DEs, and policies ever registered in the system.
Then, given an intent, (𝑎𝑖 , 𝑓𝑗 , 𝑑𝑘 ), the Policy Broker creates a query
that checks whether there is a policy that permits 𝑎𝑖 to execute 𝑓𝑗 on
𝑑𝑘 . For efficiency, whenever more than one intent is created, these

are all represented in a single query. Finally, if there are matching
policies, the Gatekeeper permits the function invocation on that
DE. Otherwise, it blocks execution.
Brokering Data-blind Functions. Data-blind functions do not
include a list of DEs the function needs to access, unlike data-aware
functions. The Gatekeeper determines what DEs are accessible
to the function and agent by combining: i) the set of DEs with a
matching policy; ii) the set of DEs in enclave mode. Both sets are
retrieved from the Policy Broker. The first is by querying DEs that
match a predicate containing the calling agent, 𝑎𝑖 , and function, 𝑓𝑗 .
The second is by requesting DEs stored in enclave mode.
Function Execution. After determining what DEs are visible to a
function, the Gatekeeper must enforce the function only accesses
those DEs. This is achieved by creating a “jailed” (i.e., in the Unix
chroot [28] sense) execution environment that isolates the function
from all available resources except for those it is given explicit
permission. We explain the design of the execution environment in
Section 5. For now, it suffices to know that such execution environ-
ment also captures: i) the concrete set of DEs the function actually
accesses; and ii) the DEs it produces. First, note that a function
may be given access to more DEs than it actually needs access to;
for example, a function that builds a spatio-temporal index only
needs access to DEs with spatial and temporal attributes. Second,
a function will produce and return results. The Gatekeeper must
manage the results returned by a function invocation.
Staging Zone and Result Delivery. The Gatekeeper must decide
whether it can forward the results of a function invocation to the
calling agent or not. If the function invoked is data-aware, then
the function did execute because there is a matching policy for the
specific DE indicated. If there is a matching policy, it means that
the DE’s owner indicated that 𝑎𝑖 can execute 𝑓𝑗 , which implies 𝑎𝑖
can access the results. Thus, in this case the Gatekeeper will return
the results to the calling agent. If the function invoked is data-blind,
the function may have executed over both DEs for which there
was a policy available, and enclave DEs for which there was no
policy. When the results depend on only DEs for which there was
a matching policy, the Gatekeeper can return them to the calling
agent. When they also depend on enclave DEs, the results cannot be
returned without previously obtaining permission from the enclave
DE owner. The Gatekeeper determines whether the results depend
on only DEs with matching policies or not by retrieving the list of
actually accessed DEs from the execution environment, as explained
above. Any results that cannot be delivered to 𝑎𝑖 directly are stored
in the staging zone, where they exist as enclave DEs, awaiting a
matching policy that permits their release.
Result Granularity and Brokering Access.When an enclave DE,
𝑑𝑘 , is part of a function’s results, the Gatekeeper seeks permission
from the data owner to release 𝑑𝑘 to 𝑎𝑖 . The owner originally set
the DE in enclave mode with the intention of permitting Data
Station to perform some computation, but without establishing
what functions could be invoked and by whom. After the DE is part
of the results of a function invocation, the Gatekeeper provides
precise information on both who accessed the DE, 𝑎𝑖 and via what
function, 𝑓𝑗 . The owner then may decide to grant access to the
calling agent, which amounts to creating the policy (𝑎𝑖 , 𝑓𝑗 , 𝑑𝑘 ).



Denying access leaves the list of policies unmodified and the DE
removed from the staging zone. Finally, if the list of enclave DEs
is large, brokering access, which requires involving data owners
may become time-consuming. Data Station gives the calling agent
the option to call the functions over only the collection of DEs for
which a policy is available. This option allows calling agents who
want to see the result immediately after it becomes available.
Provenance and Granularity. In acting as the single-point-of-
entry for all functions, and observing both the input (accessible
DEs), the list of actually accessed DEs obtained from the execution
environment, and the function output, the Gatekeeper learns the
provenance of each derived data product. The provenance is used
primarily to understand if the results are accessible by 𝑎𝑖 , as ex-
plained above. The provenance granularity depends on how the
applications that register functions are built. For example, a native
application built using Data Station APIs to access DEs can com-
municate precisely what DEs were used to produce the different
outputs, and how. Data Station permits the execution of unmod-
ified applications. We concentrate on the latter. Here, when the
function’s output DEs are a subset of the input DEs, the Gatekeeper
checks for matching policies. For example, a search function that
returns DEs that contain a keyword. When functions return re-
sults that are a combination of input DEs, then these newly created
DEs, by definition, have no matching policies. For example, when a
function trains a machine learning model off training datasets pro-
vided by different owners. The Gatekeeper relies on an additional
mechanism to aid in handling these latter common cases.

3.2 Derived Data and Dependency Graph
When an intent refers to a DE uploaded by an owner, the Gate-
keeper checks if there is a matching policy. But in many scenarios,
functions require accessing DEs that are derived from other DEs [4].
For example, a search function may use an index, which may in
turn be created by another function from a set of accessible DEs.
The index is an intermediate DE. Because of that, no owner writes
directly a policy for the index. When functions run on intermediate
DEs, Data Station needs a mechanism to determine access to DEs
and to facilitate the task of data owners when writing policies.
Function Dependency Graph. The dependency graph is a di-
rected acyclic graph (DAG). Nodes represent functions, and directed
edges represent dependencies between these functions in the form
of DEs. For example, a search function depends on an index func-
tion, that itself creates the index from DEs. The dependency graph
is created during the application registration process (Section 5).
Owners understand the dependency between functions. When they
write a policy to permit a function to execute on DEs they own,
they are implicitly permitting any children of the function to access
that DE as well. Hence, if they write a policy for the search function,
they are also allowing index to access their DEs.
Policy Matching with Dependency Graph. To leverage the func-
tion dependency graph, during the policy matching process, the
Gatekeeper must check whether there is an existing policy for the
function, or any descendant. Without the dependency graph, if
there is no matching policy, the Gatekeeper would only grant exe-
cution access to the function if the DE is in enclave mode. And this

would later require brokering access to the function results, intro-
ducing unnecessary delays. Instead, the dependency graph permits
skipping unnecessary handling of policies and vastly simplifies the
task both for users, owners, and the Gatekeeper.

3.3 Auditable Computation: The Log
If Data Station keeps its promise, then owners are guaranteed that
their DEs are accessed only in the way the policies they wrote
permit. There are scenarios where auditors, compliance officers,
and other third parties need access to the inner doings of Data
Station. Because Data Station centralizes computation and data,
they capture the provenance of every function invocation. This
can be stored in a log and offered to operators as a source-of-truth
record of what Data Station has done.

To be useful to operators, the auditability log must record every
intent, policy match check, and DE result delivery that Data Station
performs. It must permit data owners consulting the information
that concerns DEs they own and it must permit data operators ac-
cessing this information when the participating agents have agreed
to such arrangement. In other words: no computation can occur in
Data Station without it being recorded in the log.

The Gatekeeper is the perfect candidate to manage this log
because it already acts as a central actor checking every function
invocation that aims to access DEs. Thus, the log, architecturally,
resides inside the Gatekeeper. All writes to this log originate in the
Gatekeeper, and all reads to the log go through the Gatekeeper, as
with any other function invocation.

The log is a DE whose owner is Data Station. When a new owner
joins Data Station, Data Station creates policies that permit owners
to access the log and consult any activity that pertains to DEs
they own. The owners can then inspect the log by invoking the
corresponding function.
Log Entries. The log resides on disk and consists of a sequence
of entries. Each entry consists of an agent id that corresponds to
the caller that triggered the creation of the entry, and a payload.
The payload can be of different types. It can indicate an intent was
created, an intent-policy match, and a mismatch. And it also records
what DEs are allowed outside the Station, including derived data
products. Note that it is possible to trace what DEs contributed to
any intermediate DE because theGatekeeper keeps the provenance,
which is itself materialized in this log. All history concerning DEs
is stored in the log and this is the source of auditability.
Opening Access to Third Parties via Contracts. By default, the
only agents who can inspect the log are owners. And they can
only consult entries related to DEs they own. To permit access to
third parties, all participating agents in Data Station must produce
a contract. With a contract, Data Station creates a policy for the
operator agent, who can then consult the log. A contract is a policy
(𝑎𝑜 , 𝑟 , 𝑙), where 𝑎𝑜 is the id of the operator, 𝑟 the read function on
the log, and 𝑙 the DE that refers to the log. A contract is different
than a policy in that it must be signed by every participant. Without
a signature per participant, Data Station does not create the policy,
and the operator cannot consult the log. Data Station relies on
public key cryptography to permit agents to sign contracts; these
primitives are introduced in the next Section.



4 TRUSTWORTHY COMPUTATION
We introduce mechanisms used to protect Data Station’s promise
when running on untrusted infrastructure. We say Data Station
runs in near-zero-trust mode when these mechanisms (introduced
in Section 4.1) are activated. We present the encryption protocols
used by Data Station in Section 4.2 and conclude by explaining how
we deal with the log and the databases (Sections 4.3 and 4.4).
Threat Model. We assume that a curious operator gains access to
Data Station infrastructure and can read disk and memory contents.
To keep its promise, Data Station cannot leak any DE to this opera-
tor. Furthermore, Data Station cannot leak information from the
database (that contains all agents, DEs, and policies) or auditable
log. The adversary may gain access to a list of agent ids, but they
should not be able to link those ids with any other information. We
do not protect against denial-of-service attacks.

4.1 Near-Zero-Trust Principles
To ensure the confidentiality of every DE in Data Station, data is
encrypted end-to-end, from the moment where it leaves the agent’s
infrastructure, and including while functions access that DE in
memory, i.e., during processing. To ensure integrity, every message
is signed with the private key of the agent from where it originates.
To bootstrap trust, Data Station’s node proves its identity to agents
and attests that it runs the original Data Station software, and not
a modified version, thus avoiding backdoor attacks.

Every shared DE is encrypted with an agent’s specific symmetric
key. It is then transmitted to Data Station over a secure channel
with TLS [14]. Once in Data Station, it remains encrypted at rest.
When a function needs to access the data, Data Station leverages
secure hardware enclaves to maintain the data encrypted in mem-
ory, i.e., for processing, the DE is decrypted into encrypted memory.
Functions may need to store intermediate results in the file system,
such as temporal files. Because some of these intermediates may
leak sensitive information, these intermediates are encrypted trans-
parently to the application: no function can store plain data on disk
when Data Station operates on near-zero-trust mode. We introduce
secure hardware enclaves and the two key properties Data Station
uses: encrypted memory and remote attestation.

4.1.1 A Primer on Secure Hardware Enclaves. AMD’s Secure En-
crypted Virtualization (SEV) and Intel’s Software Guard eXtensions
(SGX) leverage specially-built hardware to isolate virtual machines
(node) [29] and applications [25], respectively, within areas called
enclaves to protect data leakage from even privileged users of the
system. These technologies introduce important tradeoffs.

Compared to SEV that encrypts all of a node’s working memory,
SGX limits the total working memory to 128MB [24]. The upside
is that with SGX users only need to trust the application that runs
inside the enclave. In contrast, with SEV they must also trust the
OS, which is ultimately responsible for ensuring memory pages are
encrypted. Another downside of SGX is that applications need to be
rewritten, as opposed to SEV, which accepts unmodified software.
Since January’22, Intel has deprecated SGX [11]. This, in addition to
the increased convenience of having all memory encrypted means
we implement Data Station leveraging AMD’s SEV.

Encrypted Memory. AMD’s SEV guarantees confidentiality by
encrypting all of the OS’s writes to memory. Unauthorized users
(including by the hypervisor in cloud contexts) cannot read data
in plaintext, i.e., dumping the memory contents of the process
(e.g., cat /proc/[pid]/maps) will show a cyphertext. With the
more recent SEV-SNP (Secure Nested Paging) [50], the Trusted
Computing Base (TCB) (the set of all hardware, firmware, and
software that agents need to trust) only has two components: the
AMD hardware and firmware, and the operating system image
running in the node. All other components are untrusted, including
the BIOS, hypervisor, other images (in the case of multi-tenant
cloud scenarios), and external PCI devices. In summary, agents
need only trust AMD’s hardware is correctly implemented and that
the OS image implements SEV correctly.
Attacks to Enclave Implementations and Limitations. Data
Station operating in near-zero-trust inherits any vulnerabilities of
the underlying SEV-SNP implementation. Solving SEV’s implemen-
tation specific bugs [36, 37] is outside the scope of this paper, and
AMD actively works to mitigate them at the time of writing. SEV
enclaves protect the confidentiality and integrity of data in main
memory, but not of data living on external devices, such as disks
or GPUs. Data Station offers protection for data on disk as well as
its transfer to memory, but it does not support computation on the
GPU. Another limitation of enclaves is their reduced performance:
we show in the evaluation section that this overhead does not af-
fect application runtime significantly. Finally, every major vendor
provides a secure enclave technology, but the specific security guar-
antees of SEV that make it a good fit for Data Station are, as of
May’22, only provided by AMD and available in the Google Cloud.

4.1.2 Bootstrapping Trust with Remote Attestation. To convince
agents that the infrastructure running Data Station has SEV enabled
and that the software running is indeed Data Station software, the
platform uses remote attestation, as provided by AMD’s hardware.
This permits agents request a report from the node that contains
unique identifying information. Furthermore, the agents can trust
the node is running a version of Data Station with a correct imple-
mentation of the software, including the Gatekeeper, as opposed
to an adversarial modified version that includes a backdoor. If the
software restarts, the entire remote attestation process repeats to
avoid an attacker swapping software versions.

4.2 e2e Encryption Protocol and Key Manager
The end-to-end encryption protocol must ensure all DEs are al-
ways encrypted, including during processing. At the same time, it
must permit agents with a matching policy to access the DEs. Two
components are primarily responsible for achieving this goal, the
Protocol Coordinator that uses mostly standard public-key cryptog-
raphy, and the Volatile Key Manager that is the mechanism used to
protect cryptographic keys. We explain both next.
Preliminaries. Every agent and Data Station have a public and
private key. In addition, every agent has a symmetric key that they
share with Data Station. Data is encrypted and signed (to prove
identity ) at origin and remains encrypted throughout the lifecycle.
Protocol Coordinator. To process a DE, Data Station first decrypts
it in memory by using the symmetric key shared by the DE’s owner.



Because memory in the enclave is encrypted, the data remains
protected from external observers. To transmit a DE (e.g., to an
agent with a matching policy) Data Station first decrypts the DE in
memory and re-encrypts it with the symmetric key of the receiving
agent. Again, the DE remains encrypted at all times because this
processing takes place in-memory.
Volatile Key Managemer. Data Station possesses two classes of
sensitive information: i) the symmetric keys used by agents to
encrypt the DEs; ii) its own private key. If any of these keys is
compromised, the whole system’s guarantees fall apart. To protect
these keys, they are stored in a volatile key manager that resides
in-memory, hence encrypted. This is a simple way of maintaining
the keys secure while Data Station is running. However, if Data
Station restarts (e.g., failure, maintenance), the keys will vanish
from the key manager, so a strategy to recover them is needed.
Some enclave technology, such as Intel’s SGX supports sealing data,
which means encrypting in-memory data to disk with an enclave-
specific key. AMD SEV does not support sealing [53]. Hence, Data
Station relies on agents resending their encryption keys to recover
the Key Manager state when necessary.
Derived Data Products.Data Station is responsible for encrypting
derived data products before storing them on disk. Notice that
there is no need to use any specific key. Unlike with shared DEs,
derived data products exist because owners let Data Station invoke
functions on them. It follows Data Station can select what key to
use to maintain their encryption on disk. Data Station uses the
calling agent’s symmetric key to avoid one round of re-encryption
if the calling agent is given permission to access the DE.

4.3 Audit Log Management
If the audit log was stored in plain text, an attacker who gains access
to the node would learn what functions were executed on what
DEs and by whom, and thus could learn about existing policies.
Although this may not be critical in some applications, Data Station
protects against this risk by maintaining the log encrypted on disk.
The log is a sequence of ⟨𝑎𝑖 , 𝐸𝑘𝑢 (𝑙)⟩ entries. The agent ID, 𝑎𝑖 , is in
plain text, but it is only meaningful with access to the database.

Only owners can see log entries that involve DEs that they own,
so naturally one may think that these entries are encrypted with
the owner’s key. However, an entry may involve many DEs, e.g.,
functions that require accessing collections of DEs, and encrypting
the entrywith eachDE’s owner’s key is inefficient when the number
of DEs is large. Instead, Data Station encrypts the log entries with
the symmetric key,𝑘𝑢 , of the data user whose function call triggered
these entries. Because only Data Station can access the audit log
and each entry is generated by exactly one agent, this solution is
more efficient.

4.4 Database Management
An attacker who gains access to the infrastructure where the data-
base is hosted learns all policies, DE locations (but not access, as
these are encrypted), and information about any agents registered
with the platform. To protect against this, the database remains
in-memory, and hence, encrypted with SEV. Then, even when an
attacker gains access to the physical machine, the contents of the

database are protected. The challenge then is how to deal with
failures and reboots of Data Station.

To solve this problem, Data Station uses an encrypted write-
ahead-log (EWAL) that is independent of, and external to any WAL
used internally by the database system. All updates to the database
are first stored encrypted in the EWAL. The entries are encrypted
by using the symmetric key of the agent who generated the up-
date. Each entry is stored along with the agent id that caused the
update. The assignment of IDs to agents takes place outside the
database so these can be incorporated in the EWAL log entries. Af-
ter restarting, the database can be recovered from the log, as in the
traditional recovery protocols of relational databases [41]. To deal
with a growing EWAL, the database can be checkpointed to disk
periodically. Ahead of storing the checkpoint on disk, this must also
be encrypted in memory (see below). After a restart, decrypting the
EWAL entries requires collecting keys from the agents first. After
the EWAL is replayed, Data Station is considered recovered. With a
recovered database, Data Station can recover, in turn, the audit log.
Encrypting Database Checkpoint without a Sealing Mecha-
nism. The database checkpoint must be encrypted ahead of being
stored on disk. With sealing, Data Station would use the enclave
key to encrypt the checkpoint. Without a sealing mechanism, we
resort to a different solution. The baseline solution is to select one of
the symmetric keys of agents to encrypt the checkpoint. On restart,
agents will resend their keys to Data Station, which attempts to
decrypt the checkpoint with each newly received key until it suc-
ceeds. Because operation cannot be resumed until all agents have
resent their keys, this process does not introduce additional delays.
To increase reliability, i.e., in case the agent whose key encrypted
the checkpoint does not reconnect to Data Station, the checkpoint
can be encrypted with𝑚 agents’ keys instead, and then as soon as
one key decrypts the database Data Station becomes operational.

4.5 Other Protections and Limitations
Potential adversaries that gain control of the infrastructure cannot
modify the contents of the database because it is encrypted. Hence,
they cannot create policies, agents, or change the sharing mode of
existing DEs. Furthermore, these attacks to the integrity of the mem-
ory contents will be discovered when SEV-SNP becomes available.
All interactions with Data Station are mediated via the Protocol
Coordinator, who among other things, handles authentication.

Although the EWAL and audit log are encrypted on disk, an
attacker could potentially perturb these, e.g., by adding random
bytes. Data Station is not protected against such denial of service
attacks. This limitation of the implementation could be addressed
by extensions to support a replication service.

5 EXECUTION ENVIRONMENT
Requirements. The execution environment comprises all the func-
tionality and components of Data Station that permit the execution
of applications. In designing Data Station, we wanted to permit
existing applications execute unmodified to ease their deployment.
The requirements for the execution environment are:



• Developers register existing applications with Data Station with-
out making changes to the application’s implementation. They pro-
vide a simple connector that indicates how to invoke the application
functionality.
•Data Station provides the applicationwith the necessary resources
to execute and serve function invocations while guaranteeing the
application is isolated from other applications and from data it
cannot access.
• During execution, the DEs accessed by the application must be
recorded by the execution environment and sent to the Gatekeeper
after the function finishes.
• In the near-zero-trust mode, data is encrypted on disk. The ex-
ecution environment ensures applications access decrypted data
transparently so they do not break during execution.

5.1 Design
Function Registration. Application developers register functions
with the Gatekeeper via a connector. The connector contains the
functions exposed to Data Station and the dependencies between
these functions. This is all the information Data Station needs to
build the function dependency graph. Upon system initialization,
Data Station loads all connectors from developers to register the
functions with the gatekeeper. Each function in the connector is in
charge of invoking the functionality from the application.
Resource Management and Isolation. When the Gatekeeper
grants execution permission to a function, the function is instanti-
ated in an isolated process with restricted and controlled access to
the system’s resources.
Interceptor Middleware. Data Station starts an Interceptor upon
initialization. The Interceptor knows all processes started by the
Gatekeeper and the locations such processes can access. It inter-
cepts all I/O calls from the function’s isolated process to storage. The
Gatekeeper and the Interceptor middleware work in a client-server
manner as follows:
• TheGatekeeper passes the list of accessible DEs to the Interceptor
through the function’s execution environment. The Interceptor
makes sure that only those accessible DEs are visible to the function
by filtering out those that are not.
• The Interceptor records all DEs actually accessed by the function
and sends them back to the Gatekeeper, again through the function’s
execution environment.
•When operating in near-zero-trust mode, data is encrypted on disk,
and no function side effects (such as temp files) should be stored
in plain text. Whenever a function invokes a read operation, the
Interceptor decrypts the data on-demand; analogously, it encrypts
writes using the data owner’s symmetric key.

Last, the Gatekeeper obtains from the Interceptor the list of DEs
the function actually accessed and proceeds as explained earlier.

5.2 Implementation
The executor environment operates on a local file system. Extending
it to other settings is beyond the scope of this paper.

The Gatekeeper creates isolated processes using Docker contain-
ers. Each container effectively creates a jail (in the chroot sense)
that limits the resources accessible by functions. The container is

created so that all paths the function can access are intercepted
by the Interceptor. Furthermore, instantiating functions in Docker
containers permit easy management of the resources available.

We implement the Interceptor middleware by using FUSE [54],
with the libfuse userspace library [2] used to create file systems
in userspace. During Data Station’s system initialization, the In-
terceptor mounts Data Station’s storage to a specified mountpoint.
All subsequent function invocations will access DEs through the
mountpoint, so that all I/O operations can be intercepted.

Using FUSE has one key advantage—since the filesystem is cre-
ated in user space, we do not need to modify the kernel code to
intercept the I/O calls and perform additional operations. Avoiding
kernel modification is necessary to reduce the size of the trusted
computing base. The FUSE filesystem offers a flexible way to inter-
act with Data Station without compromising its security guarantees.

To support concurrent function invocations, the Interceptor
works as a server that accepts requests from the gatekeeper, which
starts an isolated process per function invocation. The Interceptor
keeps track of the corresponding DEs accessed by each running
function. This is achieved by associating each data access with
the identity of the execution environment that attempts to access
the data. Similarly, the list of accessible DEs (and the correspond-
ing symmetric keys if operating in near-zero-trust mode) are also
associated with the identity of an execution environment. TheGate-
keeper and Interceptor must remain connected to ensure the right
process contextual information is shared.

6 EVALUATION
We present the evaluation results to answer two questions:
RQ1: What applications does Data Station enable? We imple-
ment two types of applications in Data Station: machine learning
applications and a file-sharing application. We find that Data Sta-
tion achieve much better quantitative results and present a number
of invaluable qualitative advantages.
RQ2: Do Data Station’s design decisions lead to a practical
system?We study the overheads introduced by the need to provide
trustworthiness and the use of SEV. Our aim is to determinewhether
such overheads pose a runtime bottleneck to applications. We study
each component in Data Station as well as the overhead introduced
by SEV. We show that overheads are negligible even when running
in near-zero-trust mode.
Outline. We divide our evaluation into three subsections, the first
two address RQ1 and present the quantitative and qualitative re-
sults for two applications. The last presents the characterization of
overheads of Data Station, thus addressing RQ2.

6.1 Machine Learning Consortium
We consider a scenario where 𝑁 = 8 agents want to pool their
individual datasets, 𝐷𝑖 , to train a more powerful machine learning
model but without allowing other agents to see their raw data. Only
access to inferences on the jointly trained model is permitted. When
using Data Station (in near-zero-trust mode), each agent registers
their data with the platform because they know their data will
be protected end-to-end. We also consider a federated learning
scenario, where agents’ data never leaves their own machine and
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Figure 2: Accuracy and runtime of the four baselines on adult income (left), CIFAR-10 (center), and COVIDx (right).

the model is trained in a distributed manner. The federated learning
setting corresponds to the closest setting we can deploy to achieve
the desired goal, and we compare federated learning with Data
Station from a qualitative perspective later in this section.
Baselines.We consider the following baselines:
• Base. This is a centralized untrusted server training the model. It
serves as a reference to compare with other baselines.
• DS. Data Station running in near-zero-trust mode.
• Flower [10]. A state-of-the-art federated learning framework
implementing the FederatedAveraging aggregation algorithm [40].
We sample from 2 clients after each round to accelerate convergence
and as recommended in the documentation. We deploy Flower in a
distributed setting, with each client/agent accessing its own node.
• OpenFL [47]. A state-of-the-art federated learning framework
that implements the same aggregation algorithm as Flower but does
not sample per epoch. Its support for distributed computing is not
mature; we deploy all clients in a single node.

When exploring federated learning baselines we considered oth-
ers such as PySyft [66] and FATE [1].We choose Flower and OpenFL
because they implement state-of-the-art federated aggregation al-
gorithms and are mature: i) they are actively maintained; ii) their
documentation is complete; iii) the examples in their tutorials work.
Machine Learning tasks.We consider 3 machine learning tasks:
• Logistic Regression on the Income dataset [56]. The task is to
predict whose salary is <$50K. In the federated learning baselines,
each agent has access to a 4.5K-sample even split of the dataset.
• Computer vision on the CIFAR-10 dataset [32]. Each agent has
access to 6,250 samples.
• Computer vision on the COVIDx CXR-3 dataset [61]. Each agent
has access to 3810 chest-ray images. The task is to predict whether
the patient has COVID-19. The total size of the dataset is 14GB and
the model used is neural network.
Experimental Setup. We use n2d-highmem-8 instances (8 virtual
CPUs and 64GB of RAM) from Google Compute Engine. In particu-
lar, we use 8+1 (clients+server) such nodes for Flower; in the case of
OpenFL, we run all clients and server in a single node because the
framework does not work well in a distributed setting. We run Base
and DS in a single node with the same specs as the other nodes, but
enabling SEV when running DS to support near-zero-trust mode.
We use the same logic for pre-processing, training, inference, and
evaluation across baselines, with one exception. OpenFL on income
is implemented using a Keras model (instead of sklearn which we
use in the others) becasue of the limited support of the framework
for other libraries.

Metrics and Baselines. We evaluate the time it takes to train the
model and the maximum accuracy achieved in the four baselines.
Results. Fig. 2a, Fig. 2b, Fig. 2c show the results of the experiment
for the three tasks. The performance of Flower and OpenFL is
shown as a convergence line. We fit a line to increase readibility
when the underlying convergence behavior is spiky. We use dots
that indicate when convergence is achieved for Base and DS. We
observe several trends.

First, on the same amount of time, centralized training (Base and
DS) achieve higher accuracy than the federated learning baselines.
Second, the federated learning baselines take 3x more time (e.g.,
11 hours vs 4 hours in Fig. 2c) to achieve a similar accuracy than
DS. This is true for the more complex deep network models: CI-
FAR (Fig. 2b) and COVIDx (Fig. 2c). In the much simpler, logistic
regression model used for the income experiment, the centralized
approaches and Flower perform similarly well; OpenFL takes a bit
longer to produce results but otherwise achieves a similar accuracy.

Second, both federated learning frameworks perform similarly.
OpenFL is less stable and runs out of memory in the COVIDx ex-
periment (the X in Fig. 2c). Note that we run the federated learning
baselines in their best-case-scenario, where each client has a ran-
dom sample of the training data. When this is not true (common in
practice) the efficiency of federated learning reduces.

Third, the runtime overhead of DS with respect to Base is mini-
mal across all datasets, despite running in near-zero-trust and main-
taining clients’ data encrypted end-to-end. However, DS running
in near-zero-trust cannot run computation on GPUs, so when doing
so brings performance benefits, DS leaves those on the table. We
demonstrate that in Fig. 2c, by including Base running on a GPU
and showing the performance difference with DS.

The results show the advantages in accuracy and runtime of
centralizing data and compute, and the low overhead of Data Station
compared to off-the-shelf (non-trusted) model training.

Qualitative Analysis. There are various important qualitative differ-
ences between Data Station and federated learning:
Compatibility. Federated learning supports only machine learning
models that can be merged. Data Station has no such limitation.
Similarly, existing applications must be modified and adapted to the
federated learning framework. Data Station only requires writing a
simple connector to expose the functions.
Security and Leakages.Many federated learning frameworks leak
weight updates [27], which can be leveraged to reconstruct part of
the data, thus breaking the promised security guarantees. A solution
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is combining federated learning with differential privacy [59]. This
requires further modifications to applications and algorithms, and
results in further performance reduction.
Performance Differences.Many federated learning algorithms
do not guarantee the same performance as centralized implementa-
tions. We demonstrated this quantitatively above.
Scalability. While (in principle) federated learning scales with the
number of data contributors, the current design of Data Station
would need to adapt to support multi-machine setting. We do not
anticipate severe barriers in achieving that goal.

6.2 Secure Data Sharing
In this scenario, owners store data in a third-party server and se-
lectively let other agents access this data by writing policies. In
this scenario, we execute Data Station in near-zero-trust mode, and
so it is subject to overheads from the enclave and the encryption
protocol. We want to understand whether these overheads lead
to an impractically slow platform. To answer that question, we
measure the runtime and compare it with Sieve’s [58].
A Primer on Sieve. Sieve enables cryptographically secure data
sharing via an untrusted intermediary. It uses symmetric keys for
encrypting files, like Data Station. It encrypts metadata for each
file with attribute-based-encryption (ABE) [22] and this allows it to
generate decryption keys that only work with selected attributes.
Finally, it relies on homomorphic encryption [20] for revoking ac-
cess to datasets. Unlike Data Station, Sieve is exclusively designed
for file sharing. Sieve is the only approach we identified that si-
multaneously addresses the secure data sharing problem, is open
source, and uses cryptographic techniques to build trust with data
owners. The role of Sieve in our evaluation is to provide a refer-
ence performance to facilitate interpreting the performance of Data
Station when running in near-zero-trust mode.
Experimental Setup. Sieve can generate decryption keys that
only decrypt data previously encrypted with specific attributes.
We use one Sieve attribute per registered function inside Data
Station. Assume there are 𝑛 DEs and𝑚 functions. Sieve encrypts
each dataset with a symmetric key and the metadata (the functions)
with ABE. This lets a user who wants to invoke a function 𝑓 ∈ 𝑚

download a dataset in Sieve. Data Station runs in near-zero-trust
mode and implements a download application. download takes a
DE as input parameter and, if permitted by the gatekeeper, sends
the DE to the user. This replicates the Sieve setup with the same
functionality, thus letting us compare both approaches.

Metrics. We evaluate the end-to-end performance of data sharing
by measuring the time for the data owner to upload datasets and
the time for the data user to download datasets. In Data Station,
we create 𝑛 ∗ 𝑚 policies to indicate that a user can invoke any
function on any DE. We use files each consisting of 10KB random
byte strings. We show average runtime over 20 runs.
Upload Results. Fig. 3a shows the results for uploading data with
Data Station and Sieve when changing the number of DEs (x axis)
and the number of registered functions (different bar styles). First,
when the number of registered functions (#F-𝑚) is small, Data Sta-
tion is an order of magnitude faster than Sieve. When the number of
functions increases to 50, Data Station is 80% faster than Sieve, and
at 100 functions Data Station is still 25% faster. Second, the scaling
behavior in both Data Station and Sieve is similar and depends
on the number of DEs and functions. However, what is crucially
important is that, in Data Station, we are measuring the worst case
scenario where every DE can be downloaded by any function. Note
that, when this is not the case, Data Station’s overhead will reduce
(with the number of DEs and actual functions allowed), while in the
case of Sieve it will remain constant because it still needs to encrypt
a value for the attribute. Finally, in Data Station the dominating cost
is creating policies that requires writing to the EWAL as it operates
in near-zero-trust. In Sieve, the symmetric encryption of the file
varies only with the number of DEs uploaded. The most significant
Sieve overhead is the ABE encryption time, accounting for over
95% of the upload time among all DEs and attributes. Data Station
outperforms Sieve’s even in the worst-case scenario of allowing
every function to execute on every DE.
Download Results. Fig. 3b shows the results for downloading data
when changing the number of DEs (x axis) and the number of reg-
istered functions (different bar styles). After a user calls download
and the Gatekeeper checks they have access the function reads the
encrypted DE into memory, decrypts it with the owner’s symmetric
key, re-encrypts it with the user’s symmetric key and sends it to
the user. Sieve’s higher runtime stems from the use of ABE. Sieve’s
owner has to generate a decryption key (Keygen) via ABE for the
necessary attributes, shown in the bottom bar of Fig. 3b. The gen-
erated key is sent to the user, who uses it to decrypt the data; this
decryption accounts for over half of the time spent downloading.
Although Sieve’s design allows the key generation to execute only
once for a user to gain access to the data, the decryption and down-
load costs must still occur. Data Station thus provides two benefits
over Sieve: i) owner needs no interaction with the user downloads;
ii) runtime is between 1 and 2 orders of magnitude lower.
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Qualitative Analysis. We complement the quantitative results with
important qualitative differences between approaches.
TrustModel. Unlike Data Station, Sieve does not hide file metadata
(i.e., policies) from the infrastructure provider. Thus, a curious
provider will learn the functions available in the platform and who
has access to them, even though they cannot read the raw data.
Data Station protects this information by keeping the database,
EWAL, and audit log encrypted at all times. A curious provider may
learn agent IDs but cannot associate them with users.
Delegated Computation. Sieve does not support delegated com-
putation, it acts as a storage provider. The implication is that once
a user is given access to a DE, the owner in Sieve must connect di-
rectly to the user. This is unlike Data Station, where we can provide
a function to perform this delegated computation, in this case the
simple download function, but in general, more complex functions
as we saw in the machine learning application above.
Revoking Access to Data. In Data Station, revoking access to data
translates to modifying a policy, which is a quick operation, and
can be done selectively for a given user. In contrast, in Sieve this
involves changing the attributes for the previously uploaded data
and then re-encrypting the file on the storage provider. Because
the file cannot be decrypted first, Sieve uses a clever technique to
re-encrypt it without decryption using homomorphic encryption.
This has several implications. First, the newly generated key must
be re-sent to those users who still have access to the file. Second,
the revocation process itself is much slower than in Data Station
because of the aforementioned techniques.

Sieve is a well designed and engineered system. We believe the
results are representative of solutions fully based on cryptographic
techniques and thus validate Data Station’s design.

6.3 Data Station Performance Analysis
The previous two experiments demonstrate that the overhead Data
Station introduces is small compared to application time. Here, we
use a noop function to understand Data Station’s fixed overheads
for users and owners. We conclude by measuring the overhead
AMD SEV introduces in Section 6.3.3.

6.3.1 Overhead for Data Users. After a user invokes a function,
the potential sources of overhead are: i) obtain user’s ID from the
database; ii) obtain accessible DEs from policy broker; iii) initialize
execution environment; iv) collect list of actually accessed DEs after
function invocation; and v) log all activity in the audit log.

Overhead Factors. In the noop operation, no DE is ever accessed
so no DE characteristics (e.g., data type) affect the overhead. The
DE size has an effect when they need to be decrypted (when op-
erating in near-zero-trust mode), but we already studied such an
effect in Section 6.2. Here, we concentrate instead on the 5 steps
above. Of those, ’obtaining the list of accessible DEs’ dominates the
overhead, and there are two factors that affect such overhead: the
number of registered DEs and the number of functions registered.
Consequently, we show results varying these two factors.
Experimental Setup. When varying the number of functions
registered, we create a policy for each pair of DE and function,
and store these policies in the database. We report the average
end to end runtime over five runs. Neither DE size nor type affect
overhead; we use 1MB DEs representing text files.
Results. Fig. 3c shows the runtime per function invocation when
changing the number of DEs (x axis) and for different numbers of
functions. We report the runtime for obtaining the list of accessible
DEs, and we group the other sources of overhead together and refer
to them asOther. The overhead for getting the accessible DEs scales
linearly with the number of policies. With 5000 DEs and 100 func-
tions (i.e., half a million policies) the overhead is only 12 seconds.
Contrast that with the multiple minute (and hours) overhead of
training a machine learning application such as that in the previous
section, which has only a few registered functions. We conclude
that the overhead for data users is negligible for applications with
runtimes larger than a minute.

6.3.2 Overhead for Data Owners. The sources of overhead for data
owners are: i) registering with the platform; ii) (only in near-zero-
trust mode) encrypting the DEs to upload; iii) uploading DEs; and
iv) creating policies. Unlike before, the size of DE matters because
of sources ii) and iii), so we vary the DE size in this experiment.
Results. Figure 4a shows the sources of overhead in the x axis. We
show results for DEs of different sizes to expose the overheads in-
troduced by encryption (Encrypt DE) and uploading the DE (Create
DE). We report average over 100 runs. The overhead of Create User,
Create DE and Create Policy is always slightly higher in near-zero-
trust mode due to the use of SEV and writing to the EWAL, but
remain sub-second. The largest source of overhead is encrypting
DEs (only in near-zero-trust mode), which depends on DE size.

6.3.3 AMD SEV’s Performance Overhead. We measure the over-
head introduced by AMD’s SEV using the TPC-H benchmark, as
a representative data-intensive workload familiar to the reader,



and stress-ng [31], a tool to stress computer systems and used in
previous work to understand enclave’s performance [21]. We run
TPC-H on DuckDB [46] over a 100GB database with and without
SEV. Fig. 4b shows the average runtime for both baselines after 10
runs of each query. The results show that SEV indeed introduces
overhead; most noticeable in query 7 that writes a large amount
of disk-resident data into (encrypted) memory. However, the over-
head is modest given the security guarantees gained. The results
cement the advantages of modern secure hardware enclaves and
the opportunities that they open.

stress-ng [31] uses stressors to understand system performance.
Fig. 4c shows the relative slowdown of a stressor with SEV ac-
tive, measuring the number of operations completed per unit of
time (slowdown =

SEV ops done
no SEV ops done ). The stressors that introduce the

largest overhead (e.g., walk-0a, swap, walk-1a) correspond to those
performing random-access, memory-intensive tasks. The walk-Xa
stressors force reads from physical memory, which explains the
larger overhead, and swap exchanges the contents of two different
memory locations.

7 RELATEDWORK
Data Station is the first data escrow system that concentrates in
offering delegated, trustworthy, and auditable computation. It builds
on many existing lines of research that we explain below.
Hippocratic Databases [3]. Data Station is related to the Hippo-
cratic databases vision. There are important similarities and differ-
ences. Crucially, in both papers access control is defined around a
purpose, which is specified in Data Station with a policy referencing
a function. In this way, both vision and system chase a contextual
integrity [43] view of privacy more so than one based on access
control [60]. Another similarity is the need for auditable compu-
tation, via the audit log in Data Station and the concept of audit
trails in Hippocratic databases. The differences are also important.
Hippocratic databases are envisioned as a database system that
takes care of privacy. Data Station is a data escrow system for im-
plementing other applications, including RDBMS but also ML and
other analytics-based functionality. As Data Station decouples com-
putation and data, a crucial element is the need to build trust with
users and owners alike.
Data Enclaves store restricted-use data, e.g., data subject to pri-
vacy and regulation constraints [18]. The enclave ensures that the
hosted data is protected while permitting users to execute certain
pre-determined computations, often with review prior to data re-
lease [33, 62]. They are commonly found in research organizations,
where they are built with the intention of facilitating data-driven
research, e.g., ICPSR in the social sciences [26], and NORC [44].
These enclaves are the result of long sustained efforts. Data Station
is geared towards easing the creation of data enclaves, including to
share data among organizations.
Multi-Party Computation, Homomorphic Encryption, Feder-
ated Learning, andDifferential Privacy. There is a growing class
of systems designed to permit collaborative analytics on restricted-
use datasets. Shrinkwrap [7] and Saqe [8] permit the execution of
SQL queries over data from multiple organizations, while ensuring
differentially private results that do not disclose the identity of

any participant. Conclave [57], Cerebro [64], and Secrecy [38] rely
on multi-party computation to achieve a similar goal. Alternative
techniques such as homomorphic encryption permit run compu-
tation directly on encrypted data. These technologies concentrate
on providing trustworthy data processing. Unlike existing solu-
tions and technologies, Data Station is designed to tackle the three
requirements presented above, which no other solution achieves.
Confidential Computing initiatives have been promoted by cloud
vendors to build trust with customers who store their data in the
cloud. Azure Always Encrypted [5] lets users run computation on
data they own on infrastructure they do not own (i.e., the cloud).
Similarly, research approaches such as Haven [9], SCONE [6], Key-
stone [35], Ryoan [23], VC3 [49], protect data processing when
the data is hosted in the cloud. Many of them focus on protecting
databases [19, 52, 63, 65]. Some recent work has proposed infras-
tructure to facilitate running SQL queries across data from multiple
parties [13]. All these solutions leverage secure hardware enclaves,
like Data Station. But unlike Data Station, none of them enable
delegated, trustworthy, and auditable computation on data owned
by multiple parties.
Auditability.Many have noted the importance of building audit
logs, in IoT environments [45], using blockchain technology [39, 48,
51] to make the log tamper-proof, and even building databases on
top of that abstraction [16]. Similarly, there is work proposing ways
of reasoning about access policies in the context of databases [4].
The techniques used in these approaches are complementary to
the ones we use in the audit log in Data Station. Unlike these
approaches, Data Station leverages the centralization of data and
compute to simplify the problem.

8 CONCLUSIONS
The increasing number of scenarios where organizations benefit
from pooling and sharing data calls for technical solutions to ease
the task of forming data-sharing consortia. We have presented Data
Station, a data escrow system that implements delegated, trustwor-
thy, and auditable computation with the aim of facilitating owners
and users to share and benefit from each others’ data. Data Station
supports unmodified applications and thus a wide range of appli-
cations. We presented mechanisms to generate trust from owners
and users based on the use of secure hardware enclaves and crypto-
graphic protocols. The evaluation results demonstrate the feasibility
of the approach when compared to strong baselines for other appli-
cations, including machine learning training consortia and secure
data sharing. We study the overheads and demonstrate they are
negligible compared to application runtime. Beyond the quantita-
tive differences, we highlight important qualitative advantages of
the data escrow design.
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