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Abstract—Data analysts often need to find datasets that are
similar (i.e., have high overlap) or that are subsets of one
another (i.e., one contains the other). Exactly computing such
relationships is expensive because it entails an all-pairs com-
parison between all values in all datasets, an O(n2) operation.
Fortunately, it is possible to obtain approximate solutions much
faster, using locality sensitive hashing (LSH). Unfortunately, LSH
does not lend itself naturally to compute containment, and only
returns results with a similarity beyond a pre-defined threshold;
we want to know the specific similarity and containment score.

The main contribution of this paper is LAZO, a method to
simultaneously estimate both the similarity and containment of
datasets, based on a redefinition of Jaccard similarity which takes
into account the cardinality of each set. In addition, we show how
to use the method to improve the quality of the original JS and JC
estimates. Last, we implement LAZO as a new indexing structure
that has these additional properties: i) it returns numerical scores
to indicate the degree of similarity and containment between each
candidate and the query—instead of only returning the candidate
set; ii) it permits to query for a specific threshold on-the-fly, as
opposed to LSH indexes that need to be configured with a pre-
defined threshold a priori; iii) it works in a data-oblivious way,
so it can be incrementally maintained. We evaluate LAZO on
real-world datasets and show its ability to estimate containment
and similarity better and faster than existing methods.

I. INTRODUCTION

Analysts in modern organizations are faced with an ever in-
creasing number of heterogeneous and disconnected datasets.
One way to help analysts manage this complexity is to provide
them with tools that discover data related to each other in
particular ways. For example, finding pairs of datasets that are
similar to each other helps analysts identify duplicate tables or
complement a table of interest with additional, similar infor-
mation. Similarly, finding pairs of datasets with a containment
relationship—e.g., the values of a column are fully contained
in another column—helps in identifying primary-key/foreign-
key (PKFK) relationships as well as derived datasets. These
can be used to help analysts join datasets together. Similarity
and containment are the measures used by Aurum [7] as well
as [13], [21], [22] to relate datasets together.

Two commonly used metrics to measure similarity and con-
tainment relationships between columns are Jaccard similarity
(JS) and Jaccard containment (JC). Jaccard similarity measures
the size of the intersection of the columns over the size of their
union i.e., JS(X,Y ) = |X ∩ Y |/|X ∪ Y | for two columns
X and Y . Jaccard containment measures the ratio of the size
of the intersection of the two columns to the size of one of

the sets (it is asymmetric). For example, for X it is defined
as JC = |X ∩ Y |/|X|.

With repositories containing a large number of columns,
computing these metrics exactly requires an all-pairs compar-
ison of the columns (O(n2)), which is prohibitively expensive,
as we demonstrate in Section II. As a result, common practice
is to rely on approximate methods, which scale to larger
datasets, and are acceptable for data discovery tasks, which
are inherently exploratory and imprecise.

One widely used technique for approximating Jaccard sim-
ilarity is locality sensitive hashing (LSH), which is used in
many applications [8], [14]. With LSH, it is possible to hash
the columns in the databases, in a way that similar columns
hash to the same bucket. This reduces the complexity of
finding candidates to O(n).

Despite the promising properties of LSH, there are several
important limitations that make it difficult to use directly for
the data discovery problem we are interested in:

LSH Cannot Estimate Containment. Estimating contain-
ment requires estimating the size of the intersection, which is
difficult to do with LSH [2]. A few methods have attempted
to adapt LSH schemes for containment but either i) they
do not support incremental indexing, which is necessary in
the context of modern organizations, where existing data is
continuously changing and new data arriving; or; ii) they do
not work well in the context of databases [18]. Although non-
LSH methods exist for computing containment, such as [19],
they almost all involve some form of all-pairs comparison, as
we describe in Section VI.

Building MinHash sketches is computationally expensive.
Building a MinHash sketch [5] of a set involves hashing
every value K times with different independent hash functions,
with K usually in the hundreds. This quickly becomes a
performance bottleneck, as we show in the next section. For
this reason, many methods have recently been proposed that
compute sketches by hashing the data only once, i.e., one-
permutation hashing methods such as OOPH [16] and many
others [11], [12], [17]. Unfortunately, the reduction in building
cost comes with significant reduction in estimation quality.

Indexes do not return a similarity score. In discovery
scenarios we need to know the similarity score between a
query and the candidates e.g., finding whether two columns are
30% or 70% similar to each other. LSH indexes are configured
to return the set of columns with a similarity to the query



higher than a pre-specified threshold, and do not contain the
score. A baseline solution to obtain the similarity score of
candidates is to index the data into indexes configured with
different thresholds and then query them all, determining at
which threshold a result becomes a candidate. This solution,
however, increases the storage needs as well as the indexing
and querying time.

This paper introduces the LAZO method, the first approach
that simultaneously estimates containment and similarity with
LSH. The gist of the LAZO method consists of a redefinition of
JS based on the cardinality of the sets that enables estimation
of intersection and union independently. This, in turn, allows
estimation of both JS and JC. The JC estimate depends on
that of JS; i.e., they are coupled. We use this coupling to our
advantage. In particular, we know that the JC between two
columns cannot be larger than 1, and yet, it often happens that
an initial estimate is greater than this because the JC estimate
depends on the JS estimate, which is not perfect. We use this
invariant to detect and correct our estimate of JS. Practically,
this means that LAZO makes faster-to-build sketches, such as
OOPH [16], perform as well as the more accurate but slower
to build MinHash sketches.

Along with the LAZO method, we describe an implemen-
tation of a LAZO index, which returns the similarity and
containment scores along with each candidate. In addition,
the index can be queried on-the-fly for arbitrary thresholds,
instead of requiring pre-configuring the index with a specific
threshold a priori. This addresses the third challenge above.
To achieve all these properties LAZO only requires column
cardinalities, which are simple to obtain. In many cases the
cardinality is readily available—such as in databases, where
it is used for query optimization. When it is not available, we
estimate it using HyperLogLog [9].

In practice, we have used Lazo to compute JS and JC
relationships at any threshold in the context of Aurum [7],
our data discovery system. Lazo’s ability to index columns
incrementally is crucial to maintain Aurum up to date.

In summary, the contributions of this paper are:
• We develop the first method to estimate JS and JC at

the same time in O(n) time that does not depend on data
distributions and performs well in practice. This addresses the
first challenge above.
• By using LAZO we derive an error correcting heuristic

(ECH), which, by detecting invariants in the JC estimate,
allows us to improve the estimation quality of sketching
methods. This means that we can use one-hash sketches like
OOPH, which are much faster to compute than traditional
MinHash, without sacrificing any estimation accuracy. This
addresses the second challenge above.
• The LAZO method is compatible with existing sketches,

such as MinHash and OOPH.
• We describe a new index implementation which retrieves

candidates with different similarities and containment scores,
supports on-the-fly querying and can be maintained incremen-
tally, as data arrives.

All
Pairs Disk

All
Pairs RAM

MinHash
LSH

DWH
(n=1690) 165s 9.5s 7.4s

MassData
(n=5514) 261s 201s 82s

canadagov
(n=97621) - >24h* 17min

TABLE I
RUNTIME OF ALL-PAIRS AND MINHASH/LSH FOR 3 DIFFERENT

DATASETS. (* DID NOT FINISH AFTER 24 HOURS)

In addition to estimating JS and JC simultaneously and
in a data-oblivious way, we show in the evaluation section
that: i) the containment estimation quality of LAZO is higher
than that of LSHEnsemble, especially for the case when we
are using high containment thresholds (where one column
is very nearly contained in another) to discover inclusion
dependencies, which is the most important application of
containment in data discovery and integration applications in
the database literature; ii) we show that we improve OOPH’s
accuracy, making it the preferred choice when compared with
the slower-to-build MinHash; iii) we demonstrate our LAZO
index implementation performance and describe its interface,
which is better suited for data discovery tasks. Finally, we
demonstrate that LAZO’s overhead is negligible when running
on several large datasets.

The rest of the paper is organized as follows. In the next
section, we provide background and explain the limitations of
existing sketching techniques. We introduce our main method
in Section III and its implementation in Section IV. We then
evaluate our techniques in Section V, before presenting related
work (Section VI) and conclusions (Section VII).

II. PRELIMINARIES

In this section we introduce MinHash and LSH (sec-
tion II-A): techniques to solve an approximate nearest neigh-
bor problem, and show the practical performance difference
with all-pairs methods in section II-B. Because MinHash
suffers a performance bottleneck, we walk through the family
of one-permutation hashing methods, OPH, in section II-C
and demonstrate the performance and quality gap between
MinHash and OPH methods in II-D. Finally, we discuss the
state of containment estimation in II-E.

Problem Statement. Consider the problem of finding pairs of
columns that satisfy a relationship r, among all the columns
of a large dataset. We say two columns c1 and c2 are related
if r(c1, c2) > δ, for a threshold δ. An exact algorithm to
find all related columns exhaustively computes the relationship
strength between all pairs of columns and returns the pairs
with strength above the threshold. This all-pairs comparison
is an O(n2) operation, which becomes prohibitively expensive
when n (the number of columns in the dataset) is large.

A. MinHash and LSH

It is possible to find all pairs of similar columns in O(n) by
solving an approximate nearest neighbor problem with LSH
instead of an all-pairs one. For that, it is first necessary to
obtain a representation of each column, i.e., a sketch. Such



sketches must have two properties: i) they must be fast to
compute; ii) they can be used along with LSH; i.e., indexed
in a hash table to find collisions. According to the second
property, there are two well-known sketch methods. One is
based on random projections (SimHash [3]), and it is good
for approximating cosine similarity. The other method, which
is the focus of this paper, is based on random permutations
(MinHash [5]), and is good for approximating Jaccard simi-
larity, which is defined as JS(X,Y ) = |X ∩ Y |/|X ∪ Y |
Minwise hashing. Consider two sets, or columns, c1, c2 ∈
C with each set consisting of elements from a universe of
elements ∀e ∈ ci, e ∈ E. Consider a random hash function, h,
that maps an element from E to S, the universe of hash values,
and obtains the minimum value s ∈ S produced by applying
h on ci, that is min (hj(ci)). For a given h, the probability
of the minimum value between two sets being the same is
equivalent to the JS between the sets [5], that is:

P (min(hi(c1)) = min(hi(c2))) =
|c1 ∩ c2|
|c1 ∪ c2|

(1)

Then, given K independent random hash functions, h1,
h2,...,hK , the JS is estimated with MinHash as:

ĴS(X,Y ) =
1

K

K∑
i=1

[min(hi(x)) = min(hi(y))] (2)

with [x] being the Iverson bracket, that returns a 1 when
x is true and 0 otherwise. In practice, this means that each
value of each column is hashed K times. The resulting set of
K values is the MinHash sketch.

Once available, the MinHash sketch is used along with LSH
to retrieve other sketches with a Jaccard similarity greater than
a specified threshold in O(n) as explained next.

Locality Sensitive Hashing Index. LSH indexes the sketches
in a way that those that are similar are more likely to hash into
the same hash table entry. The LSH index can be queried with
a sketch, and will return a set of sketches, called candidates,
that are likely to have a Jaccard similarity of more than a
pre-configured similarity threshold. It works as follows:

LSH divides each sketch into a set of bands b, each with r =
K/b hash values. Then, each of the band values are indexed
(after concatenation) into a hash table entry. The idea is that
MinHash sketches that collide in the same entry are likely to
be candidates. The parameters b and r are chosen based on
δ (according to the method in [10]), the similarity threshold,
and with the aim of minimizing false positives and negatives.

The advantage of using LSH is that it becomes possible
to retrieve, for a given column, other columns with a Jaccard
similarity above δ in O(n). This makes it a good choice when
the number of columns is large and approximate results are
sufficient; it fits well with our discovery scenario.

B. All-Pairs Vs LSH

To illustrate the performance difference between All-Pairs
and LSH, we measured the time they take to obtain the Jaccard
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Fig. 1. F-measure for the MassData dataset using the MinHash, CRS and
OOPH sketch along with an LSH index with K=64 and 512.

similarity of more than 0.7 for two small datasets DWH and
MassData (n = 1690 and n = 5514 columns, respectively),
and a larger one, canadagov from [22] (n = 97621 columns).
We executed All-Pairs in two modes. First, assuming data does
not fit in memory and reading it from disk (All-Pairs Disk).
Second, although generally unrealistic, with the assumption
that data fits in memory to focus on the CPU cost differences
(All-Pairs RAM). The results for both modes as well as for
MinHash/LSH are shown in table I. We highlight two points:
i) the increased IO cost of reading a subset of the data for each
comparison means that All-Pairs Disk is much slower than a
MinHash/LSH solution, where data is read only once; ii) even
for the unrealistic All-Pairs RAM, runtime grows much more
quickly with n than MinHash/LSH. In the case of the larger
dataset, All-Pairs RAM does not finish after 24 hours while
MinHash/LSH takes only 17 minutes.

Regardless of using All-Pairs or MinHash/LSH, it is pos-
sible to reduce n by filtering columns by type, size, etc.
However, after filtering, the All-Pairs method still requires
O(n2) operations. More importantly, these filters are brittle to
data quality problems; e.g., if we only match the same types,
an ID that appears in a table as an integer but as a string on
a derived table that was dumped into a lake would be missed.

In summary: when approximate solutions suffice, such as
in the data discovery applications that motivate this work,
MinHash/LSH are a much more performant solution. These
techniques are the focus of this paper.

Although MinHash has much better runtime than an all
pairs solution, the MinHash sketch still requires hashing data
K times, which (as we will show) becomes a bottleneck in
many applications. This bottleneck motivates one-permutation
hashing methods, which we explain next.

C. One-Permutation Hashing Methods

One-permutation hashing methods compute sketches using
only one hash function, unlike MinHash which needs K. We
describe next the different types of one-permutation hashing
methods and discuss their benefits and disadvantages.

1) Conditional Random Sampling: Conditional Random
Sampling (CRS) [11], also referred to as K-MinHash or
bottom-K sketch consists of hashing data only once, and
selecting the top-K minimum hash values—instead of hashing
K times and selecting the minimum per hash function.
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Fig. 2. Left: MinHash and OOPH building times for a real dataset as K changes. Center: Percentage of MinHash and OOPH building time in an end-to-end
workflow when K changes. Right: F-Measure decreases with LSHEnsemble as a higher percentage of data is incrementally added.

Unfortunately, this simple method does not work well with
LSH because the sketches are not “aligned”, which is a well
known problem [17]. When CRS sketches are indexed in
LSH—by splitting them into bands—the values in the bands
are not aligned to each other, as they would be when computed
with independent hash functions. This means that collision-
free CRS sketches do not imply dissimilarity: similar values
may not be part of the top-K minimum values. These sketches
perform poorly when used with LSH (see Fig. 1), and they are
not an option for our setting.

2) One Permutation Hashing: With OPH [12], instead of
hashing K times with independent hash functions, the values
of the set are hashed once and partitioned into K different
buckets, and the sketch is comprised of the minimum hash
value per bucket. The major drawback of this method is the ex-
istence of empty buckets, which appear when data is skewed.
If untreated, empty buckets would collide with each other,
artificially producing false similar sets. This renders OPH
unusable for our data discovery setting, because real data is
skewed. Fortunately, recent methods have proposed to handle
empty buckets through different densification strategies, which
address the problem.

Densifying One Hash Permutation. To deal with empty
buckets, One-Hash Permutation with Rotation (OPHR) [17]
fills empty buckets based on the closest non-empty bucket to
the right and some constant, which indicates the number of
“hops” between the empty and non-empty bucket [17].

Although this is an effective way of treating empty buckets,
the quality of the estimation deteriorates when there are
consecutive empty buckets, which is common in the context of
databases. To improve on OPHR, Optimal One-Hash Permuta-
tion (OOPH) [16] uses 2-universal hash functions to not only
select consistently the bucket from which to draw values when
a bucket is empty, but also to do so with sufficient randomness
to avoid the consecutive empty bucket problem. OOPH is the
state-of-the-art method for one-hash permutation sketches.

D. The Gap between MinHash and OOPH

Given the previous discussion of different sketching meth-
ods, we now explore three questions: i) Is there a measur-
able runtime difference between OOPH and MinHash when
building sketches?; ii) Do these differences matter in real
applications?; and iii) Is there an estimation quality difference
between these sketches?

To answer these questions, we use one of the real datasets
from our evaluation and implement an end-to-end workflow
that: i) reads the data; ii) creates sketches with MinHash or
OOPH; iii) indexes them in a traditional LSH index; and iv)
queries the index to retrieve similar candidates. We use a small
dataset for this microbenchmark; note time grows linearly with
dataset size. We vary K, the number of permutations.

The results in Fig. 2 (left) show that the cost of building
MinHash grows with K, unlike OOPH. Note that we assume
we hash each value read exactly once. In practice, we may
want to first produce n-grams from the read data, and then
hash the multiple n-grams, as in [21]; this would further widen
the gap observed in these graphs.

Do these differences matter in practice?. In short, yes.
These time differences, along with the cost of I/O, represent a
large fraction of the total computation time in our end-to-end
workflow. Specifically, Fig. 2 (center) shows the relative cost
of building the sketches with respect to the total workflow time
for all the configurations of K. The results show that building
the sketches take a non-negligible portion of the entire time,
especially when K grows.

Do OOPH and MinHash estimates differ in quality?.
Again, yes. The gain in performance of OOPH comes with
the cost of lower estimation accuracy. To demonstrate this,
we obtain the truly similar pairs, i.e., ground truth, for the
dataset and measure the the F-measure of the results obtained
using the workflow described above. Note that in general
it is possible to perform an expensive post-processing step
on the candidates obtained, in which an exact computation
of similarity is performed to remove false positives. This
step improves the precision and not the recall. We do not
perform that post-processing step in this paper because we
are interested in understanding the properties of the different
sketches and techniques directly.

The results of the experiment are shown in Fig. 1, showing
the F-Measure for 1 dataset (see Section V for details), with
different K values. The first obvious result from the figures is
that CRS does not perform well when used along with LSH,
as we had anticipated. Second, OOPH performs significantly
worse than MinHash, with a difference in the F-measure of
up to 0.3 for high thresholds.

Thus, we have a tradeoff with existing methods: either we
stick to MinHash, which is expensive to compute but achieves
good quality, or we use OOPH, which sacrifices quality for
faster to compute sketches. As a way around this tradeoff,



the method we present in this paper bridges this estimation-
accuracy gap: LAZO is compatible with both MinHash and
OOPH, when configured to use OOPH it matches the MinHash
accuracy while maintaining the building time of OOPH.

E. State of Containment Estimation

The previous discussion is on methods to estimate similarity.
We now turn our attention to containment.

The LSHEnsemble technique [22] is the state of the art
method to estimate containment. It suffers from two problems
we have identified in practice. First, LSHEnsemble needs to
know a-priori the entire set size distribution, that is, all the
cardinalities of all the sets. If new sets become available
later, all datasets need to be re-inserted eventually to avoid
a deterioration of the estimation quality. We have measured
whether this deterioration is important. Fig. 2 (right) shows
the F-measure achieved by LSHEnsemble on the same datasets
used above, but this time we measure containment. In the X
axis, we indicate the amount of data that is inserted after
the index is created. The first point, with label ’0’ means
that all data is inserted at once; this is the setting for which
LSHEnsemble is designed, so this is the baseline. As a
larger percentage of the data is inserted after the index is
created (move in X axis to the right), the estimation quality
deteriorates.

In the context of databases in organizations, data is continu-
ously changing, so this deterioration poses an important prob-
lem. Although it could be avoided by re-inserting the sets from
time to time, this would introduce two additional challenges: i)
to decide when to re-insert; ii) additional overhead of reading
the data from the source and creating the LSHEnsemble index
all over again.

The second drawback we found when using LSHEnsemble
is its low recall for high containment thresholds. Good recall
at high thresholds is important in databases because candidate
PKFK are precisely obtained by identifying pairs of columns
with high containment, i.e., inclusion dependencies.1 A low re-
call means that many of the candidate pairs remain uncovered.
We note that for the application of linking datasets, recall is
generally more important than precision. It is always possible
to remove false positives by performing a post-processing step
after using LSH to measure the real similarity/containment
between the candidate pairs, but it is not possible to anticipate
false negatives.

LAZO addresses both of the problems above. First, it accepts
sketches as they become available; it does not need to know
the entire set size distribution a priori. Therefore, its estimation
quality does not deteriorate over time as data changes. Second,
it achieves good recall even for high thresholds. This in
turns implies a big improvement in F-measure with respect to
LSHEnsemble. We compare quantitatively with LSHEnsemble
in our evaluation section, where we further discuss the results.

1Although inclusion dependencies imply theoretically that containment
equals 1, dirty and missing data means this constraint is often relaxed, hence
we are interested in high threshold and not necessarily 1.

III. THE LAZO METHOD

The key advantage of LAZO is that in addition to an OOPH
sketch of the data, it only requires the cardinality of the
individual sets to simultaneously estimate containment and
similarity. We present the LAZO method in Section III-A and
a heuristic to correct estimates in Section III-B.

A. Cardinality-Based Coupled JS/JC

The key insight that enables the estimation of JS and JC is
that it is possible to define JS in terms of the cardinalities of
its individual sets, instead of using the cardinalities of their
intersection and union. The expression of JS for sets X and
Y with known cardinalities, |X| and |Y |, is given by:

JS(X,Y ) =
min(|X|, |Y |)− α
max(|X|, |Y |) + α

(3)

and the expression for JC is given by:

JCx =
min(|X|, |Y |)− α

|X|
(4)

where α is a parameter that we want to estimate. The ex-
pression for JS follows from the observation that the maximum
Jaccard similarity between X and Y , JSmax(X,Y ) is:

JSmax(X,Y ) =
min(|X|, |Y |)
max(|X|, |Y |)

(5)

That is, the maximum possible JS between two sets is the
cardinality of the smallest set, which is the maximum possible
size of the intersection, divided by the cardinality of the largest
set, which is the maximum size of the union. Two non-empty
disjoint sets, which have a JS = 0, will have a value of
α = min(|X|, |Y |). They have an empty intersection and a
union as big as |X|+ |Y |. Hence, any similarity between the
sets that is smaller than JSmax will take elements from the
intersection and add them to the union (see Eq. 3).

The key property of this expression is that with an estimate
of α it is possible to estimate both the intersection and the
union of the sets independently because these now depend on
the cardinalities of the sets and α. So in summary, in order to
estimate JC, we need α. We explain next how to obtain α.

Obtaining an estimate of α. It is possible to estimate α by
obtaining first an estimate of JS, ĴS, using for example OOPH.
With a value for ĴS available, we rearrange Eq. 3 to obtain
α as:

α̂ =
min(|X|, |Y |)− ĴS ∗max(|X|, |Y |)

1 + ĴS
(6)

With a value for α̂, it becomes possible to estimate the
intersection of the sets independently from their union, and
therefore ˆJCx and ˆJCy , as follows:

ˆJCx =
min(|X|, |Y |)− α̂

|X|
; ˆJCy =

min(|X|, |Y |)− α̂
|Y |

(7)



Essentially, with an estimate for ĴS and the cardinality
of the sets, |X| and |Y | available, it is possible to obtain a
coupled estimation of both JS and JC, the metrics of interest.

B. Observing Error to Correct Estimates

One surprising consequence of the coupled-estimation of JS
and JC based on set cardinalities is that it is possible in some
cases to correct the original estimate of ĴS after observing the
value of ĴCx and ĴCy . We use ĴCx to illustrate our error
correction estimate, but the expressions apply equivalently to
ĴCy . The real JCx (not the estimate) is given in Eq. 4.

The expression contains a value for α. Of course, we do
not know the real value, only the estimate computed above,
α̂. For this reason, we can only estimate ˆJCx.

The key insight of the error correction method is that there
is an invariant that holds over JC: ĴCx cannot be higher than
ĴC

x

max, which is defined as:

JCxmax =
min(|X|, |Y |)

|X|
(8)

Thus, when the value obtained for ĴCx (or ĴCy) exceeds
JCxmax, we know the estimation error is at least ĴCx −
JCxmax, and we can correct that error by adjusting α̂ so that
ĴCx = JCxmax. We refer to this correction as error correction
heuristic (ECH). The α̂ correction, in turn, improves the
originally estimated ĴS. Note that the estimation error may
be larger than the adjustment we made above, however the
adjustment is guaranteed to improve the estimate or leave it
the same.

Summary. In this section, we showed how to obtain a coupled
estimate of JS and JC, where the quality of JC depends on the
estimated value for JS, and in which observable error in JC is
used to improve the estimation of JS. We now explain how to
use this with our LAZO implementation.

IV. LAZO IMPLEMENTATION

In this section we present LAZO’s interface (IV-A) and its
implementation, focusing on how to build, insert and query
it IV-B. We finish with a discussion in Section IV-C.

As described in the previous section, LAZO is not a sketch-
ing method. Rather it is a way to estimate JC and improve
the JS estimate from an existing sketch such as MinHash or
OOPH. Specifically, our implementation builds an index using
a supplied sketch, and then uses that index to return columns
with non-zero JS and JC for any user-supplied input column.

A. LAZO Interface

The LAZO index is queried with a column represented by
its sketch. For example, if we want to find columns with a
similarity or containment relationship with respect to a query
column, c1, we query LAZO with the c1 sketch, which will
then return a set of candidates. Each candidate consists of a
tuple < key, js, jc > to identify the underlying column with
its key, as well as the js and jc score that indicates the strength
of similarity and containment. LAZO’s main interface is:

• related(q) This function returns any candidate that has
non-zero Jaccard similarity or Jaccard containment with re-
spect to the input parameter q. Each candidate consists of:
key, similarity and containment scores.

In other words, with a single call it is possible to understand
the strength of both similarity and containment relationships
between an input sketch and all other sketches. To find the
relationships between all-pairs, we call the above function for
every column.

We present results for single- and multi-thread implemen-
tations of LAZO in the evaluation section.

We explain now how to build, insert, and query the LAZO
index to support the above interface.

B. LAZO: Sketching, Inserting, Querying

Estimating JC depends on obtaining a good estimate of
α̂, which depends, in turn, on having access to a numerical
estimate of JS. Obtaining this similarity score is the central
challenge addressed by our LAZO index implementation.

A naive way to achieve our requirements would be to insert
the sketch into multiple LSH indexes, each configured with
a different threshold. Then, we could query the indexes and
identify the highest threshold at which a specific column
becomes a candidate. That threshold is a lower similarity
threshold for the candidate and the immediately next threshold
is its upper similarity bound. At this point, the estimate is
within the lower and upper bound.

This basic design, however, multiplies the storage required
and the indexing time, because a single sketch must be indexed
in multiple LSH indexes—and the number of indexes depends
on the desired granularity of thresholds. Furthermore, because
it is necessary to query all indexes to obtain the numerical JS
estimate, the query cost also increases.

The LAZO Index. We propose an alternative design that
tackles both problems. When configuring an LSH index for
a particular threshold, δ, and number of permutations, K,
K is divided into bands, b with a number of rows so that
b∗r <= K. The band size is related to the similarity threshold.
Therefore, different thresholds lead to different number of
bands and rows. We say that a sketch consists of multiple
segments, where each segment consists of the r values in
each b. Each segment is then indexed into a different hash
table, which is used to find collisions across sketches. Multiple
thresholds will then require multiple different hash tables, all
of which must be queried to find candidates. The intuition of
our solution is that because we know all the thresholds we
need to query, we know all the band sizes, and by finding
the greatest common divisor (GCD) of those bands, we obtain
the minimum sketch slice that needs to be indexed. The GCD
band size will correspond to one of the lower thresholds. When
querying for higher thresholds, their bands will contain several
GCD bands, each stored in a different hash table. We need to
query the individual hash tables and aggregate the results by
taking their intersection.



Algorithm 1: Initialize the LAZO Index
input : K, number of permutations of underlying sketch,

D, similarity threshold granularity
output: I , the LAZO index ready to be used

1 num thresholds ← 1/D;
2 bands and rows ← getOptimalBandsAndRows(K, num thresholds);
3 gcd band size ← gcdOf(bands and rows);
4 num ranges ← K / gcd band size;
5 hash tables ← [ hash table for k in num ranges ];
6 hash ranges ← [ i * gcd band size for i in num ranges ];

We compare both implementations in the evaluation section
and give more analytical detail about the costs in this section,
after presenting our alternative design.

We describe next: i) how to prepare a sketch to be inserted
in the LAZO index; ii) how to insert the sketch and; iii) how
to query the index to retrieve candidates.

1) Building the LAZO Sketch: LAZO uses an existing JS
sketch (i.e., OOPH or MinHash) as well as the cardinality of
the column. In case the cardinality is not already available,
we provide a wrapper that uses HyperLogLog [9] to obtain
an estimate of the cardinality for which the sketch is being
built. We show experimentally in the evaluation section that
this estimate works well in practice.

2) Building the LAZO Index: We describe how to initialize
the LAZO index (algorithm 1) and how to insert sketches into
it (algorithm 2). The initialization algorithm takes as input
parameters K, the number of permutations used to build the
sketches, and D, which is a parameter that determines the
granularity of the numerical estimate of JS. It returns I , which
is the LAZO index ready to be used.

During the initialization stage, the algorithm uses D to
determine the granularity of the JS estimates (line 1). For
example, for D = 0.05, we have thresholds from 0 to 1
in increments of 0.05, totaling 20 total similarity thresholds.
These values seem to provide fine-grained enough thresholds
to suffice all applications we have found. For each threshold,
the algorithm computes the optimal number of bands and rows
in line 2 by using the method described in [10]. Once the
bands for all thresholds have been computed, we obtain the
band size as the greatest common divisor of all bands in line 3
which will be used to determine the number of ranges in which
to divide sketches (line 4), and hence the required number
of hash tables. The remaining of the initialization algorithm
(lines 5 to 6) creates the hash tables and stores the sketch
ranges corresponding to each one of the hash tables. The
ranges indicate how to obtain the sketch segments.

Inserting sketches. When inserting a new sketch, the algo-
rithm must store the cardinality for the sketch (line 2), slice
the sketch into segments, according to the ranges determined
during initialization (line 3), and finally store each segment
into its corresponding hash table (lines 4 to 7), along with the
key corresponding to the input sketch.

3) Querying the LAZO Index: We explain in detail the
querying process in algorithm 3. The algorithm takes the
LAZO index, I , the sketch that represents the query column,
sketch, and then, optionally, either a JS or JC threshold,
js threshold or jc threshold respectively. It returns C,
which is a collection of tuples, < key, js, jc >. Each tuple

Algorithm 2: Insert in LAZO Index
input : I , the LAZO index,

key, an identifier for the sketch to be inserted,
sketch, the sketch to be inserted

1 cardinality ← get cardinality(sketch);
2 I.[key] ← cardinality;
3 segments ← getSegments(sketch, I .hash ranges);
4 for i ∈ I .num ranges do
5 segment ← segments[i];
6 hash table ← I .hash tables[i];
7 insertSegment(hash table, segment, key);

contains the candidate c represented with its key, as well as
its js and jc score with respect to sketch. The candidates, C,
are obtained as follows:

The algorithm iterates over the thresholds configured in the
index, along with the corresponding bands and rows (line 4),
starting with the highest threshold. Recall the bands and rows
associated to each threshold were computed in algorithm 2,
and are available in I . For each threshold, the algorithm
determines how many of the segments fit into the correspond-
ing band size. Because the segments were created using the
greatest common divisor of all bands, it is guaranteed that the
number will be an integer (line 6). Next, the algorithm finds all
candidates that appear in all the segments corresponding to the
entire band. That is, it queries each hash table corresponding
to the band, and takes the intersection of the results (lines 8
to 11). This gives the candidates for one band. All candidates
across bands are union together and stored along with the
threshold at which they became candidates (line 12). Finally,
the outer loop filters out candidates that have already been seen
(if a set is a candidate at threshold 0.7, it is at threshold 0.6
too), and it associates the remaining ones with their threshold,
which is the JS estimate we obtain.

Applying LAZO. With a set of candidates available, the next
step is to obtain the estimates for intersection and union by
using the LAZO method introduced in the previous section
(line 15). The intersection and union estimates are then used
to estimate JS (line 16). At this point it is possible to obtain α̂
(line 19), which is in turn used to estimate JC, in line 20 and
21. Note that even when only querying for jcx, we also obtain
jcy because it is cheap and helps us find more opportunities
to detect estimation errors. The error correction heuristic is
then used in line 22 before returning the candidates. The final
step of the algorithm is to filter out the candidates based on
the input thresholds (if specified), in line 23.

C. Discussion

We discuss two aspects related to the LAZO index before
presenting our evaluation results.

Implementation analysis. The base implementation creates
an independent LSH index for each threshold, i.e.,

∑S
i=0K/bi,

with S the number of thresholds and bi the band size for a
specific threshold. Our design only needs K/GCD(S) hash
tables, where GCD is the greatest common divisor of the
band sizes. Since GCD is as large as the smallest band, our
solution will always consume less than or the same space than
the base one. For example, for typical values of D = 0.05
and K = 512, 64 the Lazo index reduces the number of hash



Algorithm 3: Query LAZO Index
// Query the LAZO Index
input : I , the LAZO index,

sketch, the sketch representing query column,
js threshold
jc threshold

output: C, a set of tuples of the form key, js, jc.

// Retrieve candidates
1 C ← set();
2 candidates ← map[δi− > [key]];
3 seen candidates ← set();
4 for δi, bands, rows in I .bands and rows do
5 for b ∈ bands do
6 segments per band ← rows / I .gcd band size;
7 band candidates ← set();
8 for i ∈ segments per band do
9 segment ← getSegment(sketch, I .hash ranges, i, b,

I .gcd band size);
10 hash table ← I .hash tables[i];
11 band candidates ← intersection(hash table[segment]);

12 candidates.store(δi, band candidates);
13 candidates ← filter seen candidates(candidates, δi, seen candidates);

// Aggregate Candidates
14 for c ∈ candidates do
15 ix, un, ← apply lazo(c);
16 js ← ix / un;
17 min card set ← min(card(c), card(sketch));
18 max card set ← max(card(c), card(sketch));
19 α ← obtain alpha(min card set, max card set, js);
20 jcx ← (min card set - α) / card(sketch);
21 jcy ← (min card set - α) / card(c);
22 js, jcx, jcy ← correct estimates(card(sketch), card(c));
23 if js > jsthreshold or jc > jcthreshold then
24 . add((c, js, jcx, jcy), C);

25 return C

tables by 4x and 5.5x respectively. The practical performance
implications are shown in the evaluation section: indexing in
Lazo is an order of magnitude faster and querying is 2-10x
faster.

Lazo cost. With respect to a traditional LSH index, the LAZO
index introduces the additional cost of applying the LAZO
method. This cost is linear with the number of candidates,
which in real datasets is much smaller than the number of
original sets. Of course, in exchange for this small cost we
obtain numeric scores for Jaccard similarity and containment
simultaneously. We demonstrate in the evaluation section that
the linear cost introduced by LAZO is negligible in the context
of a full-fledged pipeline.

V. EVALUATION

• How well does LAZO estimate Jaccard containment? We
want to understand LAZO’s Jaccard containment estimation
quality, (Section V-A).
• Does LAZO improve accuracy of similarity estimates?
We demonstrate in Section V-B how LAZO improves the
estimation quality of MinHash and OOPH through its error
correction heuristic (ECH).
• Is the LAZO overhead low enough to make the index
practical? We demonstrate in Section V-C with large datasets
that the overhead is negligible in practice.
• Microbenchmarks: We compare the LAZO index against
the baseline implementation. We analyze the effect of the
parameter D on accuracy. Finally, we study the effect of
cardinality estimation on the JS and JC estimates.

Datasets. We use the following datasets:

• MassData: This dataset consists of public governmental
data from Massachusetts. It contains data about parking tickets
and citizen complaints among many other things. It contains
around 300 relations and around 6K columns.
• ChEMBL: This dataset is a well-known public chemical
database containing information about drugs and compounds.
The dataset consists of 70 relations with around 500 columns
of many different sizes. We use ChEMBL 22 [20].
• DWH: This dataset contains relations with information about
subjects, buildings, faculty, employees and other aspects of our
university. The dataset consists of around 160 relations and
about 1.7K columns.
• datagov: This dataset consists of 10K CSV files with around
100K columns and 210GB size in total. It was extracted by
downloading all the CSV datasets from USA data.gov [1] and
filtering out those files that had some quality problems in
it, such as bad headers. We use it only to demonstrate the
overhead of LAZO because we could not extract ground truth
in reasonable time.
• canadagov: This dataset was used in [22] and made
publicly available. It consists of around 100K columns from
Canada open data and around 5GB on disk.

Setup. We run our experiments in an Intel(R) Xeon(R) CPU
E7-4830 with 256GB RAM. We implement LAZO in Java
2 and use a value D = 0.05 for the LAZO index in all
experiments unless we indicate the opposite. LAZO is trivial
to parallelize. To demonstrate its scalability, we wrapped
up LAZO in a multi-threaded implementation and run an
experiment where we indexed 10K columns of 1K values
each, and then found all pairs with non-zero similarity and
containment. We measured the runtime when using different
number of threads (up to 16). The results of Figure 9 (Center)
demonstrate that the library scales linearly. In the remainder
of the evaluation section we use a 1-thread implementation.

A. Estimating Containment

We evaluate the quality of containment estimation and
compare it with that obtained by LSHEnsemble [22], the state
of the art solution that had achieved the better results so far
(we also considered ALSH [18], but LSHEnsemble achieves
better results in the context of relational data, as shown in
[22]). We configure LSHEnsemble with the same K as LAZO
and use the same cardinality estimates.

Previously we showed how the estimation quality of LSH-
Ensemble deteriorates if data is not inserted at once (Fig. II-A
in Section II). When data is changing and evolving, the
LSHEnsemble index will eventually need to be recomputed
from scratch because its containment estimate requires data-
dependent information. LAZO does not suffer from this prob-
lem because the method is data-oblivious. Despite this qualita-
tive difference, we want to understand the estimation quality in
comparison with LSHEnsemble even when data is unchanging.
For this experiment, we assume all sketches are precomputed
at once, and compare against LSHEnsemble in this setting.

2Open source code available at https://github.com/mitdbg/lazo
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Fig. 3. Containment comparison of LAZO-MinHash/OOPH and LSHEnsemble. Showing precision, recall and F-measure for the MassData dataset
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Fig. 4. Containment comparison of LAZO-MinHash/OOPH and LSHEnsemble. Showing precision, recall and F-measure for the ChEMBL dataset
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Fig. 5. Containment comparison of LAZO-MinHash/OOPH and LSHEnsemble. Showing precision, recall and F-measure for the DWH dataset
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Fig. 6. LAZO similarity estimate improvement when using ECH over MinHash and OOPH baselines on the MassData dataset

The results are shown in Fig. 3, Fig. 4 and Fig. 5, for the
MassData, ChEMBL and DWH datasets, respectively. To
measure the estimation quality, we obtained ground truth from
the three datasets considered. To do this, we compute the exact
containment between each pair of columns in each dataset
and measure precision, recall and F-measure for different
containment thresholds. We compare LSHEnsemble against
LAZO when using MinHash as the underlying sketch, LAZO-
MinHash and when using OOPH, LAZO-OOPH.

The main result is that LAZO performs better than LSH-
Ensemble for higher containment thresholds—which are im-
portant to detect inclusion dependencies in the presence of
dirty and missing data, and hence essential in data discovery
scenarios. In particular, for thresholds above 0.6, the recall of
LSHEnsemble degrades quickly, with a gap of up to 0.35 for
all datasets. The recall deterioration of LSHEnsemble explains
the better performance of LAZO in F-measure for MassData
and ChEMBL. In the case of DWH, LAZO-MinHash still per-
forms better than LSHEnsemble, but LAZO-OOPH achieves
a worse F-measure—although the recall is still much better,
there is a drop in precision for this dataset.

Precision and Recall. In the discovery scenario, achieving
good recall is more desirable than achieving good precision.
Good recall means we find more inclusion dependencies, and
precision could be improved by running a post-processing step
where the candidates are exactly verified, if the application
requires it—we do not run it here because we are interested
in the method’s baseline performance. The results show that
LSHEnsemble’s precision is comparable to that of LAZO-
MinHash across all similarity thresholds. This comes at the
cost of the drop in recall that, as we have discussed, explains
the lower F-measure achieved in comparison to LAZO.

When comparing the results between LAZO-MinHash and
LAZO-OOPH, we observe that for the MassData and
ChEMBL datasets, both sketches achieve similar results. There
is however a difference of 0.06 with respect to LSHEnsemble
and 0.12 with respect to LAZO-MinHash in the case of the
DWH dataset for high thresholds, which occurs because of
the lower precision achieved in this case.

In conclusion, LAZO achieves better estimation results for
high thresholds, which is important to link datasets with each
other. It achieves a similar estimation accuracy for low and mid
thresholds than LSHEnsemble and more importantly, unlike
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Fig. 7. LAZO similarity estimate improvement when using ECH over MinHash and OOPH baselines on the ChEMBL dataset

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

c
is

io
n

Threshold

MinHash

OOPH

Lazo-MinHash

Lazo-OOPH
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
R

e
c
a

ll
Threshold

MinHash

OOPH

Lazo-MinHash

Lazo-OOPH
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
-M

e
a

s
u

re

Threshold

MinHash

OOPH

Lazo-MinHash

Lazo-OOPH

Fig. 8. LAZO similarity estimate improvement when using ECH over MinHash and OOPH baselines on the DWH dataset
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LSHEnsemble, it does not deteriorate when new data arrives.

B. Improving JS Estimation

In this section we study how much does LAZO improve
the similarity estimation. We run MinHash and OOPH as
baselines and compare against LAZO-MinHash and LAZO-
OOPH, which both use ECH. We measure precision, recall
and F-measure, as in the previous experiment and show results
for both the MinHash and OOPH sketches without LAZO,
which serve as baselines. Both MinHash and OOPH must be
configured with the desired number of permutations, K. We
show results for K = 64 for space reasons, but the results we
obtain apply to other values of K as well. In particular, we
also improve the estimates for K values of 128, 256 and 512.
The results are shown in Fig. 6, Fig. 7 and Fig. 8.

The results show that LAZO improves the estimation quality
of both MinHash and OOPH for all thresholds and across all
datasets. Specifically, despite the good F-measure of MinHash,
LAZO-MinHash still achieves a higher value. The most im-
portant result is that LAZO-OOPH performs better or similar
than MinHash in all datasets, while being faster to build
than MinHash (as shown in Fig. II-A). In other words, with
LAZO we improve OOPH’s estimation quality to the point of
achieving similar estimation accuracy as MinHash, which is
more expensive to build as we showed in Section II.

Across all datasets, the recall values for all methods are
closer to each other than the precision values. In other words,
the reason OOPH performs worse than MinHash is because it
produces significantly more false positives (has lower preci-

sion) than MinHash. Since LAZO-OOPH bridges the quality
gap, the corollary is that LAZO is capable of correcting many
of those false positives, improving the precision and therefore
the F-measure of OOPH. To fully understand the effect of the
ECH we run one additional experiment:
Analyzing effect of ECH. For the three datasets, the improved
accuracy is due to ECH; we verified this by turning off
the correction and verifying the results. When we disable
ECH, the results we obtain match those of MinHash and
OOPH, confirming the improvement is due to ECH. However,
we wanted to understand better the specific effect of ECH
when correcting those values. To do this, we measured how
many times LAZO uses ECH to correct an estimate, and,
of those, how many times the correction led to removing
a false positive, which we call an impactful correction. We
then measured the ratio of those impactful corrections with
respect to the total number of similar pairs for each threshold
in the three datasets. The intuition is that for thresholds in
which we observed a worse precision, we should observe a
larger percentage of impactful corrections to verify that the
estimation improvement is in fact due to ECH.

The results in Fig. 9 confirm the intuition; the percentage
is higher when the precision gap between the underlying
sketch, e.g., MinHash or OOPH, and the corrected estimate,
i.e., LAZO-MinHash and LAZO-OOPH respectively, is larger.
It also shows how, in general, the number of impactful
corrections in the case of LAZO-OOPH is much higher than
LAZO-MinHash.

In summary, using LAZO with ECH significantly improves
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the estimation quality of OOPH, bringing its quality on par
with that of MinHash, removing the tradeoff between quality
and performance presented by OOPH. With LAZO it is pos-
sible to build sketches orders of magnitude faster (recall the
results in Fig. II-A) without any quality loss.

C. Is LAZO practical?

LAZO adds two sources of overhead versus a traditional
LSH index: i) it needs to obtain the JS score to estimate JC,
which requires querying more hash tables (see Section IV for
a discussion of how our design minimizes this cost); and ii)
the cost of applying the LAZO method, which is constant per
pair of columns. In this section, we show that neither of these
costs make LAZO impractical, by conducting an experiment
with several large data sets: datagov (100K columns, 210 GB)
and canadagov (100K columns, 5 GB). The results are shown
in Fig. 10 (leftmost figure).

The figure shows the fraction of time spent reading data,
building sketches, indexing them in the LAZO index, querying,
and applying LAZO. In the two datasets, 80% and 70% of the
time is spent in reading data and creating the sketches; these
times are unaffected by the LAZO method. Querying time is a
small percentage in both datasets, because of specific features
of our designed our explored in more detail in the next section.
Last, applying the LAZO method incurs a negligible overhead.

Indexing is relatively more expensive in canadagov than
in datagov because both datasets contain approximately the
same number of columns but canadagov is around 40x
smaller than datagov on disk. The runtime was 4 hours for
datagov, and 22 minutes for canadagov. A direct runtime
comparison with LSHEnsemble is hard because LSHEnsemble
is written in Go, but as a reference LSHEnsemble takes double
the time to index canadagov [22]. Recall from Section 2, Ta-
ble I, that an all-pairs comparison on the smaller canadagov
did not finish after having run for 24 hours.

With LAZO we obtain all containment and similarity scores
for every pair of columns in the dataset. This would not be
the case if we run a vanilla OOPH/LSH implementation, that
would only return a set of candidates with similarity (and not
containment) above a pre-specified threshold. We run such
configuration nevertheless to get another reference point with
respect to the total runtime. The total runtime is 3.35 hours
(versus 4 hours for LAZO) for datagov and 12 minutes (versus
22 minutes) for canadagov. LAZO’s low overhead means it
can be used with large datasets.

D. Microbenchmarks

1) Lazo Index vs Baseline Index: Our LAZO implementa-
tion uses fewer hash tables than a baseline implementation us-
ing a different LSH index for each threshold. We explained the
precise number required by each alternative in Section IV-C.
Here, we demonstrate the performance difference on indexing
and querying with a microbenchmark.

We measure the effect of the number of sketches as well as
the number of permutations on both implementations, using
D = 0.05. We refer to the configurations as Base-Index,
Base-Query and Lazo-Index, Lazo-Query, respectively. In
the first experiment (Fig. 10 center) we vary the number of
sketches we insert and then we measure the time to insert
them all, as well as the time to query the index with all the
previously inserted sketches. The results show that the times
in all cases grow linearly, which makes sense because we are
using LSH. In the case of the Base configuration, however,
times are higher than Lazo when querying and much higher
on insertion, with gaps of up to 8x.

In the second experiment, (Fig. 10 right), we fix the number
of sketches to 1000 and vary the number of permutations from
64 to 512. This has an impact in both indexes because it
changes the number of necessary hash tables. In this case,
both querying and indexing times grow faster in the case of
the Base configuration than in the case of Lazo, with gaps
of up to an order of magnitude for high values of K.

2) Sensitivity to D: When creating the LAZO index, we
must choose a parameter, D, which determines the gran-
ularity of the Jaccard similarity estimate as explained in
Section IV-B2. This granularity, we discussed, has an impact
on both JC and JS estimation quality. Intuitively, we expect
smaller values of D to yield better estimates at the cost of
consuming more storage.

In practice, we use a small D because storage has not been a
limiting factor in our setting due to our LAZO implementation,
which reduces the necessary number of hash tables to main-
tain. Nevertheless, we study here how to save storage without
compromising accuracy.

The results for the experiment are shown in Fig. 9 (Right)
for the MASSDATA dataset (results for DWH and ChEMBL
are similar and we do not include them for space reasons). We
show how the F-measure (for the Jaccard similarity results)
changes based on the similarity threshold and on the value of
D. As expected, the smaller D, the better the estimate quality.
This is true for all thresholds. As D grows, the estimate quality
reduces faster for thresholds that are further from 0.5. This
makes sense, the further the threshold is from 0.5 the more



accurate the estimate must be to detect the right pairs. The
more interesting outcome of this experiment is that for many
thresholds, the storage needs can be reduced up to 3x—by
increasing D—without having a high impact on the accuracy.

3) Impact of exact cardinality estimates: In our implemen-
tation we use HyperLogLog to estimate the cardinality of
the columns. HyperLogLog estimates the cardinality in one-
pass only, and we share the hashed values we use for the
sketches, so the runtime overhead it introduces is negligible.
An open question, however, is whether the estimation error it
introduces is significant or not for the JS and JC estimation.
Our experimental section has demonstrated that we achieve
good accuracy for containment and similarity with LAZO.
We want to confirm the low impact on accuracy of using
HyperLogLog. We computed the exact cardinalities of the sets
for all the datasets we consider in this evaluation, use the exact
cardinalities to compute similarities, and compare the results
obtained with exact cardinalities versus the estimated.

The maximum error in the F-measure for any threshold and
any dataset was of 0.07, but the average is of 0.01 as well
as the median and the 75 percentile. The 25 percentile was
0. Given the small magnitude of error, we conclude that the
assumption is useful to use LAZO in practice.

VI. RELATED WORK

Estimating containment. Two existing methods to estimate
Jaccard containment are LSHEnsemble [22] and Asymmetric
Minwise Hashing (ALSH) [18]. LSHEnsemble achieves better
quality results as shown in [22], this is true for sets with
skewed sizes, which is the case of databases. Unlike LSH-
Ensemble, which requires knowing the cardinality of all the
sets before indexing, LAZO can be updated on the fly, as new
sets become available, without accuracy loss, and it achieves
better recall, which is important as discussed to find more
opportunities to combine datasets.

BML [13] estimates containment using Hyperloglog
sketches, but they still need to enumerate all n2 pairs of
sketches and then run a maximum-likelihood inspired algo-
rithm. We cannot directly compare accuracy and performance
because their code is not available. However, we can use
numbers from their experimental section to gain insight on
the different performance profiles of BML and LAZO. On
a dataset with 4300 columns, their experiments show that
their approach takes 600 seconds to obtain all the containment
estimates using 6 cores. Our approach (as shown in Section
2), on a dataset with 5500 columns, takes around 80 seconds
for the whole pipeline and around 30 seconds for creating the
sketches and querying, using only 1 core, and it computes both
similarity and containment scores for all candidates, instead of
only containment as BML.

Theoretical results. Previous theoretical work has pointed out
that the set intersection can be estimated by multiplying the
estimated generalized Jaccard similarity by an estimation for
the size of the union [15]. That work points out that as a
consequence, results on similarity estimation imply results on

containment. In this paper, we make this concrete by obtaining
the estimate α̂ and using it to estimate both measures, and we
do that without an estimation of the union set size, only by
using individual set cardinalities.
Exact methods. Exact methods of computing jaccard similar-
ity [4] and containment [6], [19] find the exact relationships
between all-pairs of columns. For discovery scenarios with
large number of columns exact methods are infeasible as
shown in our experiments, hence the motivation for Lazo.

VII. CONCLUSIONS

LAZO estimates containment and similarity simultaneously.
Its accuracy is good even for high containment thresholds,
which means it can be used to discover inclusion dependen-
cies. With ECH, we match MinHash accuracy with the faster-
to-compute OOPH. The overheads that LAZO introduces are
negligible, as shown in our large scale experiment with large
open governmental data. In conclusion, LAZO is a practical
method to use in discovery scenarios.
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