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ABSTRACT
Detecting erroneous values is a key step in data cleaning.
Error detection algorithms usually require a user to provide
input con�gurations in the form of rules or statistical pa-
rameters. However, providing a complete, yet correct, set
of con�gurations for each new dataset is not trivial, as the
user has to know about both the dataset and the error de-
tection algorithms upfront. In this paper, we present Raha, a
new con�guration-free error detection system. By generat-
ing a limited number of con�gurations for error detection
algorithms that cover various types of data errors, we can
generate an expressive feature vector for each tuple value.
Leveraging these feature vectors, we propose a novel sam-
pling and classi�cation scheme that e�ectively chooses the
most representative values for training. Furthermore, our
system can exploit historical data to �lter out irrelevant error
detection algorithms and con�gurations. In our experiments,
Raha outperforms the state-of-the-art error detection tech-
niques with no more than 20 labeled tuples on each dataset.
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1 INTRODUCTION
Data scientists consider data cleaning to be one of the most
time-consuming tasks [20]. Data cleaning consists of the con-
secutive error detection and data repairing tasks [14]. Error de-
tection identi�es data values that deviate from the (typically
unavailable) ground truth. Error detection strategies can be
categorized into quantitative approaches such as detecting
outliers [36] or qualitative approaches such as detecting vio-
lations of integrity constraints [18]. Data repairing identi�es
the correct values for the detected erroneous data [17, 18, 39].
In practice, error detection and data repairing are usually
performed iteratively, instead of sequentially. Hence, they
will a�ect each other in terms of e�ectiveness [39].

The focus of this work is on error detection. Running
only one error detection algorithm often will result in poor
recall [1], which suggests running multiple approaches to
cover various types of errors. However, this requires users to
engage in a series of time-consuming and non-trivial steps:

(1) Algorithm selection. Faced with various types of
errors, a user would need to select one or more algo-
rithms to run. The user typically selects algorithms
based on past experience or randomly if none is avail-
able. Trying out all of these algorithms is cumbersome
and their union aggregation often results in poor pre-
cision [1]. Another approach is to run each detector
sequentially based on their precision [1], which will
require user involvement to compute the precision.

(2) Algorithm con�guration. The user also needs to
con�gure the selected error detection algorithms based
on the characteristics of the given dataset. Depend-
ing on the error detection algorithm, the con�gura-
tion might include statistical parameters, such as ex-
pected mean and standard deviation; patterns, such as
"dd.mm.yyyy"; speci�cation of rules; or providing links
to reference datasets, such as DBpedia [7]. Having to



select the appropriate algorithm(s) and their appropri-
ate con�guration(s) results in a huge search space for
identifying the best error detection strategies.

(3) Result veri�cation. Even after an algorithm is se-
lected and the corresponding parameters are manu-
ally con�gured, oftentimes, the user still needs to be
involved in verifying the results for �ne-tuning the
algorithm and improving its accuracy.

To perform these tasks, the user has to have knowledge about
the dataset domain, its quality problems, and also the error
detection algorithms themselves.
There are attempts of using machine learning-based ap-

proaches, e.g., ActiveClean [32] and metadata-driven ap-
proach [45]. These approaches try to overcome some of these
challenges by learning from data points that were labeled
by the user as dirty or clean. However, they su�er from two
general problems. First, the designed feature vectors either
are not expressive enough to capture various error types
or have to be manually adjusted. ActiveClean uses TF-IDF
features [32], which only expose errors on the word level.
The metadata-driven approach leverages the output of con-
�gured detection tools [45], requiring the user to con�gure
the tools. Second, the required training data is quite large,
and increases with the size of the dataset. For example, the
metadata-driven approach expects up to 1% of the dataset as
the training data [45]. This can be quite large for big data.
In this paper, we propose a new semi-supervised error

detection approach that does not require the user to provide
con�gurations. In a nutshell, our approach assigns a feature
vector to each data cell. Each component of the vector rep-
resents the binary output of a particular con�guration of
a particular error detection algorithm. We then cluster the
cells of each data column based on their feature vector and
ask users to only label one cluster at a time.
Feature representation. To characterize data errors, the
feature vector encodes the output of the four main families
of traditional error detection techniques, namely outlier de-
tection, pattern violation detection, rule violation detection,
and knowledge base violation detection algorithms [1]. For
each of these algorithm families, we automatically gener-
ate a principled and limited set of possible con�gurations,
such as di�erent thresholds for outlier detection algorithms
and di�erent patterns, rules, and reference datasets for cor-
responding violation detection algorithms. Moreover, we
limit the exponential number of patterns and dependencies
and discretize the continuous space of statistical parameters
based on theoretical boundaries and best-practice heuris-
tics. We use the results of each of those con�gurations to
generate a feature vector per data cell. As not every compo-
nent of the vector represents an e�ective con�guration for
a given dataset, aggregating the results through voting or

Table 1: Required user involvement in error detection.
Error Detection Approach Algorithm

Selection
Algorithm

Con�guration
Result

Veri�cation

Stand-Alone Tools [17, 18, 36] ⇥ ⇥
Aggregators [1, 45] ⇥ ⇥ ⇥
ML-Based Approaches [32] ⇥ ⇥
Raha ⇥

other ensemble approaches might be misleading. Instead, we
use these information-rich feature vectors to compute the
similarity between data cells in order to cluster them.
User involvement. To limit user involvement, we design a
clustering and learning scheme that enables e�ective labeling
and label propagation. As each cluster contains values with
a similar feature vector, we ask the user to only label one
instance per cluster. We obtain additional noisy training data
by propagating the labels to all the other values of the same
cluster. Thus, the number of generated clusters caps the
required number of user interactions. We suggest that each
cluster that is classi�ed as dirty represents an implicit type of
data errors. A state-of-the-art classi�er can then use the user
labels and noisy labels to classify all data cells as being dirty
or clean. Table 1 shows the bene�ts of Raha compared with
existing approaches in terms of user involvement. While the
other approaches involve the user in multiple steps, Raha
only requires a small number of user labels.
Filtering features.While our approach requires only a very
small amount of user involvement, and no con�guration at
all, it consumes more runtime during feature generation
because of the large number of features. Nevertheless, the
runtime of our feature generation can signi�cantly be re-
duced using cleaned datasets from the past, if available. We
present an approach that �lters out irrelevant error detection
algorithms and con�gurations that did not contribute to the
overall performance on similarly dirty datasets in the past.
Contributions. We make the following contributions:

• We propose the con�guration-free error detection sys-
tem, named Raha (Section 3), that does not need any
user-provided data constraints or parameters.

• We propose a novel feature vector (Section 4) for the
error detection task that incorporates signals from
various error detection strategies.

• We propose a clustering-based sampling approach (Sec-
tion 4) that signi�cantly reduces user involvement for
labeling. Using the clustering-based label propagation
approach, we obtain additional noisy labels that im-
prove the classi�cation performance of Raha.

• We propose a strategy �ltering approach (Section 5)
that prunes algorithm con�gurations based on cleaned
datasets from the past. This approach improves the
runtime by more than an order of magnitude at the
cost of slightly lower e�ectiveness.



Table 2: A dirty dataset d and its ground truth d⇤.
ID Lord Kingdom

1 Aragorn Minas Tirith
2 Sauron Mordor
3 Gandalf ú
4 Saruman ú
5 Elrond 123
6 Théoden Shire

ID Lord Kingdom

1 Aragorn Minas Tirith
2 Sauron Mordor
3 Gandalf N/A
4 Saruman Isengard
5 Elrond Rivendell
6 Théoden Rohan

• We conduct extensive experiments (Section 6) to evalu-
ate Raha with regard to e�ectiveness, e�ciency, and
user involvement. We compare Raha with 4 stand-
alone error detection algorithms and 3 error detec-
tion aggregators. Using only 20 labeled tuples, Raha
outperforms any other existing solution.

2 FOUNDATIONS
We �rst de�ne data errors and categorize their types. Then,
we review general families of error detection algorithms
from the literature that are used in Raha. Finally, we formally
de�ne the problem of con�guration-free error detection.

2.1 Data Errors
Data errors are those data values inside a dataset that de-
viate from the actual ground truth. More formally, let d =
{t1, t2, ..., t |d | } be a relational dataset of size |d |, where each
ti denotes a tuple. Let A = {a1,a2, ...,a |A | } be the schema of
dataset d , with |A| attributes. Let d[i, j] be the data cell in
the ti tuple of dataset d and aj attribute of the schema A. We
denote the cleaned version or the ground truth of the same
dataset as d⇤. Every data cell d[i, j] that is di�erent from the
corresponding cell in the ground truth d⇤[i, j] is considered
to be a data error. For example, in the dirty dataset d in Ta-
ble 2, the data cells d[3, 2] = ú, d[4, 2] = ú, d[5, 2] = 123,
and d[6, 2] = Shire are erroneous according to the ground d⇤.

Data errors can be categorized into syntactic and semantic
errors. Syntactic errors are those values that do not conform
to the structure or domain of correct values. Semantic errors
are values that, although are syntactically correct, appear in
the wrong context. For example, the numerical data value
d[5, 2] = 123 is a syntactic error because it does not �t the
syntax of any kingdom name. The data value d[6, 2] = Shire
is a semantic error because, although it is a syntactically
correct kingdom in "Lord of the Rings", the correct value for
this data cell is a di�erent kingdom, namely Rohan.

2.2 Error Detection Algorithms
In principle, our system can leverage any error detection algo-
rithm that takes either continuous numerical parameters or
discrete nominal parameters as input. Any other error detec-
tion algorithm that does not require any of such parameters,
i.e., a black box, can only be used with a single con�gura-
tion. Existing error detection algorithms [17, 18, 29, 36] can

be categorized into four families: outlier detection, pattern
violation detection, rule violation detection, and knowledge
base violation detection [1]. The �rst two are mainly for
syntactic data errors and the last two for semantic errors.
Note that Raha is not limited to these categories.
Outlier detection algorithms [36] assess the correctness of
data values in terms of compatibility with the general distri-
bution of values that reside inside the column. Histogram and
Gaussian modelings [36] are two fundamental outlier detec-
tion algorithms that leverage the occurrence and magnitude
of data values, respectively. A histogram modeling strategy
builds a histogram distribution based on the frequency of
data values in a particular data column. The strategy marks
data cells from the rare bins as errors, i.e., data cells with a
normalized term frequency less than a threshold �tf 2 (0, 1).
A Gaussian modeling strategy builds a Gaussian distribution
based on the magnitude of the numerical values in a particu-
lar column. This strategy marks as errors those numerical
cells whose normalized distance to the mean is farther than
a threshold �dist 2 (0,1).
For example, on dataset d in Table 2, the output of two

histogram-based outlier detection algorithms over the at-
tributeKingdomwould be so1 = {d[1, 2],d[2, 2],d[5, 2],d[6, 2]}
by setting �tf =

2
6 and so2 = {d[1, 2],d[2, 2],d[3, 2],d[4, 2],

d[5, 2],d[6, 2]} by setting �tf = 3
6 .

Pattern violation detection algorithms [29] assess the cor-
rectness of data values in terms of compatibility with prede-
�ned data patterns. A pattern violation detection algorithm
marks data values that do not match a certain pattern.

For example, on dataset d in Table 2, the output of two pat-
tern violation detection algorithms over the attribute King-
dom would be sp1 = {d[3, 2],d[4, 2],d[5, 2]} by setting the
prede�ned pattern to alphabetical values and sp2 = {d[3, 2],
d[4, 2]} by setting the prede�ned pattern to not-null values.
Rule violation detection algorithms [18] assess the cor-
rectness of data values based on their conformity to integrity
constraints. Since the single column rules, such as value
range and length, are implicitly covered by the outlier and
pattern violation detection algorithms, we include here only
rule violation detection strategies that check inter-column
dependencies. In particular, we focus on rules in the form of
functional dependencies (FDs). Other types of rules, such as
conditional FDs, can be considered the same way.

For example, on dataset d in Table 2, the output of two rule
violation detection algorithms over the attribute Kingdom
would be sr1 = {} by checking the FD Lord ! Kingdom and
sr2 = {d[3, 2],d[4, 2]} by checking the FD Kingdom! Lord.
Knowledge base violation detection algorithms, such as
Katara [17], assess the correctness of data values by cross-
checking them with data within a knowledge base, such as
DBpedia [7]. The data inside a knowledge base is usually



stored in the form of entity relationships, such as City isCap-
italOf Country. Here, City and Country are entity types and
isCapitalOf is a relationship. The algorithm tries to match
each side of a relationship to di�erent data columns in the
dataset. If there are two data columns that are matched to
both sides of the relationship (e.g., City and Country), the
algorithm marks data values in the matched data columns
that con�ict the entity relationship inside the knowledge
base. For example, the algorithm would match a relationship
isCapitalOf to two columns and mark data cells in violating
tuples, e.g., those wrongly suggesting Berlin as the capital
of France. Therefore, the knowledge base violation detection
algorithms can also identify data errors that violate inter-
column dependencies.
On dataset d in Table 2, the output of two knowledge

base violation detectors over the attribute Kingdomwould be
sk1 = {d[3, 2],d[4, 2],d[5, 2],d[6, 2]} by setting the entity re-
lationship to Lord isKingOf Kingdom and sk2 = {} by setting
the entity relationship to City isCapitalOf Country.

2.3 Problem Statement
Given a dirty dataset d as input, a set of available error de-
tection algorithms B = {b1,b2, ...,b |B | } that require con�gu-
rations, and a user with a labeling budget �labels to annotate
tuples, we want to identify all erroneous values within d .
In particular, the problem is to automatically con�gure the
error detection algorithms B and aggregate their output into
a set of labeled data cells, i.e., O = {(d[i, j], l) | 1  i  |d |,
1  j  |A|, l 2 {dirty, clean}}, where |d | is the number of
rows and |A| is the number of columns in the dataset d .

In order to formulate the error detection problem as a clas-
si�cation task, we have to address three subproblems. First,
we need feature vectors that can represent syntactic and
semantic data errors. Second, we need a sampling approach
that can deal with the class imbalance ratio between clean
and erroneous values. Third, before running all the strate-
gies, it is also desirable to �lter out irrelevant error detection
algorithms and con�gurations to reduce the runtime.
For the sake of simplicity in the remainder of this paper,

we consider each combination of an algorithm and a con�g-
uration as one distinct error detection strategy.

De�nition 1 (Error detection strategy). Let B = {b1,
b2, ...,b |B | } be the set of error detection algorithms. LetGb =
{�1,�2, ...,� |Gb | } be the set of �nite/in�nite space of di�erent
con�gurations of an error detection algorithm b. We de�ne
an error detection strategy as a combination of an error de-
tection algorithm b and a con�guration � 2 Gb . Thus, the set
of error detection strategies is a subset of all possible error
detection strategies S ✓ B ⇥Gb = {(b,�) | b 2 B,� 2 Gb }. ⇤

3 RAHA OVERVIEW
We explain each step of the work�ow of Raha in Figure 1
using the running example in Section 2. Given the dirty
dataset, the error detection toolbox, and the user feedback
as input, Raha classi�es each data value as clean or dirty.
Step 1: Automatic algorithm con�guration. Raha sys-
tematically con�gures each existing algorithm to generate a
set of error detection strategies. In the example in Section 2,
we introduced two con�gurations for each class of error de-
tection algorithms. This would result into |S | = |B ⇥Gb | =
4⇥2 = 8 strategies: S = {so1, so2, sp1, sp2, sr1, sr2, sk1, sk2}. We
detail this step in Section 4.1.
Step 2: Running error detection strategies. Each strat-
egy marks a set of data cells as data errors. As mentioned
in Section 2, the outlier detection strategy so1, for example,
marks data cells so1 = {d[1, 2],d[2, 2],d[5, 2],d[6, 2]} over
the attribute Kingdom. We detail this step in Section 4.2.
Step 3: Feature vector generation. Raha generates a fea-
ture vector for each data cell by collecting the output of all
the error detection strategies. Each element in the feature
vector of a data cell is a binary value that shows whether a
particular strategy marks this data cell as a data error or not.
As Table 3 shows, the feature vector of data cell d[1, 2] =
Minas Tirith in our running example is [1, 1, 0, 0, 0, 0, 0, 0].
We detail this step in Section 4.2.
Step 4: Clustering data cells. Raha groups the cells of each
column into distinct clusters, based on the similarity of their
feature vectors. As Table 3 shows, the data cells inside column
Kingdom are clustered into 3 groups: a black, a blue, and a
purple cluster. We detail this step in Section 4.3.
Step 5: Sampling tuples. Raha samples a set of tuples to
be labeled by the user. Since each data column has a set of
clusters, ideally the sampled tuples should cover as many
unlabeled clusters as possible over all the data columns. For
the mentioned example, suppose Raha samples tuples t1 and
t3. These two tuples cover the black and the blue clusters over
the data column Kingdom. Ideally, these two tuples should
cover two di�erent clusters in the other data columns, i.e.,
column Lord. We detail this step in Section 4.3.
Step 6: Labeling data cells. Raha asks the user to label data
cells of the sampled tuples as dirty or clean. In the example,
the user labels data cells d[1, 1], d[1, 2], and d[3, 1] as clean
and d[3, 2] as dirty. We detail this step in Appendix C.
Step 7: Propagating user labels through clusters. Data
cell d[2, 2] will be labeled as clean because it is in the same
cluster of data cell d[1, 2]. Likewise, data cell d[4, 2] will be
labeled as dirty. These labels are noisy as they have not been
veri�ed by the user. We detail this step in Section 4.4.
Step 8: Training classi�cationmodels. Raha trains a clas-
si�cation model per data column based on the feature vectors
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Figure 1: The work�ow of Raha.

Table 3: Clustering data cells of column Kingdom.
ID Kingdom so1 so2 sp1 sp2 sr 1 sr 2 sk1 sk2

1 Minas Tirith 1 1 0 0 0 0 0 0
2 Mordor 1 1 0 0 0 0 0 0

3 ú 0 1 1 1 0 1 1 0
4 ú 0 1 1 1 0 1 1 0

5 123 1 1 1 0 0 0 1 0
6 Shire 1 1 0 0 0 0 1 0

of data cells and the propagated labels, i.e., user labels and
noisy labels. We detail this step in Section 4.4.
Step 9: Predicting labels of rest of data cells. The trained
classi�cation models are used to predict the labels of the
remaining data cells in other unlabeled clusters. In the men-
tioned example, the trained classi�cation model for data
column Kingdom predicts the labels of data cells d[5, 2] and
d[6, 2] in the unlabeled purple cluster as dirty. We detail this
step in Section 4.4.

4 THE ERROR DETECTION ENGINE
Algorithm 1 shows the main steps of Raha. It �rst con�gures
error detection algorithms (line 1) and then generates the
feature vectors (line 2). Next, Raha clusters data cells and
samples tuples for user labeling (lines 3-11). Finally, it prop-
agates the user labels through the clusters and trains a set of
classi�ers to predict the label for all cells (lines 12-16).

4.1 Automatic Algorithm Con�guration
As explained in Section 2, we can identify algorithms with
numerical and nominal parameters. For algorithms with nu-
merical parameters, such as outlier detection algorithms, we
quantize the continuous range of the parameters. For algo-
rithms with in�nite nominal parameters, such as patterns,
rules, and knowledge base violation detection algorithms,
we identify heuristics to e�ectively limit the space of parame-
ters. Of course, only a subset of the generated error detection
strategies may e�ectively mark data errors on a given dataset

Algorithm 1: Raha(d , B, �labels).
Input: dataset d , set of error detection algorithms B , labeling budget �labels.
Output: set of labeled data cells O .

1 S  generate strategies by automatically con�guring algorithms b 2 B ;
2 V  generate features by running strategies s 2 S on dataset d ;
3 k  2; // number of clusters per data column

4 L  {}; // set of user labeled tuples

5 while |L | < �labels do
6 for each data column j 2 [1, |A |] do
7 � j  cluster data cells of column j into k clusters;

8 t ⇤  draw a tuple with probability proportional to P (t );
9 ask the user to label tuple t ⇤ ;

10 L  L
–{t ⇤ };

11 k  k + 1;
12 O  {}; // set of labeled data cells

13 for each data column j 2 [1, |A |] do
14 L0j  propagate the user labels through the clusters � j ;
15 mj  train a classi�cation model with feature vectors Vj and labels L0j ;
16 O  O

–
apply the classi�cation modelmj on rest of feature vectorsVj ;

and most of them might be imprecise. Nevertheless, as long
as each strategy marks data cells using the same logic, Raha
can use the output of the strategy as a notion of similarity
for comparing data cells.
Outlier detection strategies. Histogram modeling outlier
detection strategies s�tf require a minimum term frequency
threshold �tf 2 (0, 1). Raha generates 9 histogram mod-
eling outlier detection strategies by setting the threshold
�tf 2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that, in
practice, we found that �ner granular values (e.g., �tf = 0.15)
do not create more distinctive outlier detection strategies in
comparison to the coarser granular selection of thresholds.
Formally,

s�tf (d[i, j]) =
8><
>:
1, i� T F (d [i, j])Õ|d |

i0=1 T F (d [i0, j])
< �tf;

0, otherwise.

whereTF (d[i, j]) is the term frequency of the data cell d[i, j]
inside the data column j.



Gaussianmodeling outlier detection strategies s�dist require
a distance threshold �dist 2 (0,1). Raha generates 9 Gauss-
ian modeling outlier detection strategies by automatically
setting the threshold �dist 2 {1, 1.3, 1.5, 1.7, 2, 2.3, 2.5, 2.7, 3},
according to the 68-95-99.7 rule [44]. Formally,

s�dist (d[i, j]) =
(
1, i� |d [i, j]�µ j |

�j > �dist;
0, otherwise.

where µ j is the mean and �j is the standard deviation of the
numerical data column j.
Pattern violation detection strategies. Theoretically, we
could have domain-speci�c data patterns such as dates and
URLs to detect pattern violations. However, since the set of all
possible data patterns is in�nite, we need a reasonable way to
limit the set of pattern violation detection strategies without
holding any speci�c assumption on the data domain. To this
end, we leverage the bag-of-characters representation [41],
which is a general representation for encoding all possible
data patterns, i.e., character combinations. This representa-
tion can also encode the length and type of data values as it
also shows which and how many distinct characters appear
in data values.

In particular, we generate a set of character checker strate-
gies sch to check the existence of each character ch in data
cells. For each character ch in the set of all characters in a
data column j , sch marks a data cell d[i, j] as data error if the
cell contains character ch. Formally,

sch(d[i, j]) =
(
1, i� d[i, j] contains ch;
0, otherwise.

As an example, suppose we have a date column with the
pattern "dd.mm.yyyy". The bag-of-characters representation
automatically generates the strategy s� and exposes the ap-
pearance of erroneous delimiters, such as the character "-"
in "16-11-1990".
Overall, we have

– |A |
j=1 |�j | pattern violation detection

strategies in our system, where |A| is the number of data
columns and �j is the set of all distinct characters appearing
in data column j.
Rule violation detection strategies.We limit the scope of
FDs to only those with a single attribute on their left-hand
side, in order to reasonably limit the exponential space of all
possible FDs. This way, we also avoid potentially unintended
dependencies that arise by considering large sets of data
columns. As discussed in the literature [34], most interesting
FDs involve only a few attributes. As we do not know up-
front which FDs are useful, we consider all pairs of columns
as potential FDs. With this approach, we are also covering
partial FD relationships that were unknown to the user.
For each pair of attributes 8a , a0 2 A, strategy sa!a0

marks all data cells d[i, j] that violate the FD a ! a0, in

accordance with prior work [1, 15]. Formally,

sa!a0(d[i, j]) =
(
1, i� d[i, j] violates a ! a0;
0, otherwise.

The number of rule violation detection strategies is |A| ⇥
(|A| � 1) as we consider the FDs from and to each attribute.
Knowledge base violation detection strategies. Raha es-
tablishes connections between the dataset and a knowledge
base, such as DBpedia [7]. For each relationship r inside the
knowledge base, strategy sr marks all data cells d[i, j] that
violate (contradict) the relationship. Formally,

sr (d[i, j]) =
(
1, i� d[i, j] violates r ;
0, otherwise.

Overall, we have as many knowledge base violation detec-
tion strategies as there are relationships inside the DBpedia
knowledge base [7], i.e., 2064 strategies.

4.2 Feature Vector Generation
We map each data cell to a feature vector that is composed
of the output of error detection strategies. Having a set of
error detection strategies S = {s1, s2, ..., s |S | }, we run each
strategy s 2 S on the dataset d . Each strategy s either marks
a data cell d[i, j] as a data error or not. Formally, we store
this information as

s(d[i, j]) =
(
1, i� s marks d[i, j] as a data error;
0, otherwise.

The feature vector of the data cell d[i, j] is the vector of all
the outputs of error detection strategies s 2 S on this data
cell. Formally,

�(d[i, j]) = [s(d[i, j]) | 8s 2 S]. (1)

Hence, the set of feature vectors of data cells �(d[i, j]) inside
a particular data column j is

Vj = {�(d[i, j]) | 1  i  |d |}. (2)

We post-process the feature vectors of each data column
Vj to remove non-informative features that are constant for
all the data cells of the data column.

4.3 Clustering-Based Sampling
Using the described feature vector, Raha learns how to clas-
sify data cells as clean or dirty with the help of user labels.
We train one classi�er for each column because we want to
identify errors at the cell level, not at the tuple level. Thus,
we need labels for each column. In this section, we describe
our solution for reducing the labeling e�ort by sampling
tuples that cover promising cell values from each column.
Clustering data cells. Using our expressive feature vector,
we can boost the number of labeled data cells per data column



using the cluster assumption [13], which states that two data
points are likely to have the same class label if they belong
to one cluster [13]. Thus, if we cluster data cells, cells in each
cluster are likely to have the same dirty or clean label.
We also apply a separate clustering approach for each

data column, because of the same reason that we apply one
classi�er per column. By having a clustering model per data
column, we can measure the similarity of data cells more
accurately as data values are only reasonably comparable
within their own domain.

Since the labeling will be at the cluster level, we need a
way to control the number of clusters k per column. Smaller
k’s yield bigger clusters that are more likely to contain a mix
of dirty and clean data cells. Inversely, bigger k’s will lead to
more clusters, requiring more and potentially unnecessary
labels from the user. There are clustering algorithms that
can automatically choose the number of clusters, such as
DBSCAN [22]. However, the disadvantage of these clustering
approaches is that the user has no control over the number
of clusters and thus the number of required labels.

We apply hierarchical agglomerative clustering [5], which
does not need the speci�cation of the number of clusters. This
approach starts with only two clusters per column and then
increases the number of clusters in each iteration. Its iterative
process lets the user terminate the clustering-based sampling
process at will and in accordance with the labeling budget. As
the choice of the similarity metric and the linkage method
does not a�ect Raha’s performance, we used the default
cosine similarity metric and the average linkage method.
Tuple selection. So far, the user is required to label column
values independently of the other values of the same tuple.
However, to label one data cell, the user typically needs to
check its whole tuple. Thus, it is more intuitive to sample en-
tire tuples for user labeling than individual cells per column.

Picking the best tuples is not trivial as each column might
contain errors in completely di�erent tuples. In every clus-
tering iteration, each data column is divided into k clusters
of data cells. Some of these clusters are unlabeled, i.e., none
of their data cells has been labeled. Ideally, the sampled tu-
ples should cover all unlabeled clusters from each column.
This way, labeling the sampled tuples leads to labeling all
the unlabeled data cells. However, �nding a minimum set of
tuples that covers all the unlabeled clusters is the classical
set cover problem [30]. To address this NP-complete problem,
we design an approximate approach with two properties.
First, we relax the challenge of �nding a minimum set of
tuples by selecting only one tuple in each iteration. This way,
we avoid the challenge of �nding tuples that do not cover
the same set of clusters. Second, instead of deterministically
selecting the tuple that covers the most number of unlabeled
clusters, we probabilistically select this tuple. This way, we

avoid getting stuck in local optima as probabilistic solutions
for this problem have been shown to be more resilient than
deterministic greedy heuristics against local optima [25].
Therefore, in each iteration, we draw a tuple t⇤ based on the
softmax probability function

P(t) = exp(Õc 2t exp(�Nc ))Õ
t 0 2d exp(

Õ
c 2t 0 exp(�Nc ))

, (3)

where Nc is the number of labeled data cells in the current
cluster of data cell c and exp is the exponential function with
base e . This scoring formula bene�ts tuples whose data cells
mostly belong to the clusters that have received fewer labels.

The proposed clustering-based sampling scheme has two
characteristics. First, since the sampling approach iteratively
clusters and labels under-labeled clusters, the expectation
is that at some point we will cluster each column into ho-
mogeneously clean or dirty clusters, respectively. In other
words, if there is a certain type of errors inside one data col-
umn, the hierarchical clustering approach would eventually
identify its corresponding cluster. Furthermore, the sampling
approach addresses the natural class imbalance issue as well,
because the rare dirty labels will be propagated through the
corresponding clusters.

At the end of each iteration, we have the set of user labeled
tuples L ⇢ d . This iterative procedure is repeated in the next
iterations with a larger number of clusters k 2 {2, 3, ...} as
long as the labeling budget of the user is not depleted, i.e.,
|L| < �labels. At the end of the sampling process, we have
k = �labels + 1 clusters per data column and |L| = �labels
labeled tuples.

4.4 Label Propagation and Classi�cation
In semi-supervised settings like ours, having more user la-
bels leads to faster convergence of the models [43]. We thus
leverage the clusters to boost the number of labels, accord-
ing to the cluster assumption [13]. Since we cluster data cells
based on the expressive feature vectors, the cells inside one
particular cluster are likely to have the same dirty/clean label.
Therefore, we can propagate user labels through the clusters.

Raha propagates the user label of each data cell to all data
cells in its cluster. Let L0 = {d[i, j] | i 2 L, 1  j  |A|} be
the set of labeled data cells, i.e., all data cells of the labeled
tuples L. All the unlabeled data cells d[i 0, j 0] < L0 that are
inside the same cluster of a labeled data cell d[i, j] 2 L0 get
the same dirty/clean label of data cell d[i, j]. This way, the
number of training labels L0 increases signi�cantly.
Since a cluster may have multiple user labeled data cells

with contradicting dirty/clean labels, we need a way to re-
solve such contradictions. We investigate two con�ict res-
olution functions to propagate user labels in clusters; a
homogeneity-based function and a majority-based function.
The homogeneity-based function only propagates user labels



in clusters that do not contain two cells with contradicting
labels. This approach works under the assumption of perfect
user labels, in which case, the contradicting user labels in-
side one cluster indicate that the cluster is not homogeneous
enough for label propagation. The majority-based function
propagates the user labels also in clusters with mixed labels
if a label class has the majority. The intuition is that a ho-
mogeneous cluster could also have contradicting user labels
due to the user labeling error. In our datasets, k � 1 out of k
clusters inside a column were typically small clusters with
only clean or dirty data cells while the last k’th cluster was
a large cluster with mixed dirty and clean data cells.

Raha then trains a classi�ermj per data column j to predict
the labels for the unlabeled data cells in the same column.
In the training phase, each classi�cation modelmj takes the
feature vectors of data cells inside the data column (i.e., Vj )
along with the labeled data cells (i.e., L0). In the prediction
phase, each classi�cation modelmj predicts the labels of rest
of data cells in each data column. Note that, althoughwe train
a classi�cation model per data column, the classi�er is still
able to detect inter-column dependency violation errors due
to the rule and knowledge base violation detection features.

4.5 System Analysis
Raha’s main objective is to optimize e�ectiveness and user in-
volvement. The con�guration-free nature of Raha is achieved
by leveraging a large set of prede�ned con�gurations for
each error detection algorithm. While leveraging the rich
feature vector and the clustering-based sampling scheme
leads to high accuracy with a small amount of labels, Raha
may raise e�ciency concerns as running these large set
of error detection strategies could be time consuming. Al-
though parallelization could certainly be applied to reduce
the overall runtime, it would be more desirable to stop run-
ning irrelevant strategies. To this end, one has to identify the
most promising strategies, i.e., features, upfront. This is not
possible using existing feature selection techniques as they
require the output of the strategies on training data. That is
why Raha supports a strategy �ltering approach based on
historical data as explained next.

5 RUNTIME OPTIMIZATION USING
HISTORICAL DATA

Raha provides the option of �ltering irrelevant error detec-
tion strategies if there is historical data, i.e., datasets that
have been cleaned previously. The idea is that on similar
data domains, similar error detection strategies will perform
similarly. For example, on a data column with domain City,
we need to run only those error detection strategies that
performed well on data column Capital of some historical
datasets. This way, we can improve the runtime of the system

signi�cantly. To this end, we need to address two challenges.
First, we need a notion of similarity that captures the rel-
evance of an error detection strategy with regard to two
columns. Second, we need an algorithm that can systemati-
cally adapt and select the promising error detection strategies
for a new data column based on their e�ectiveness on other
similar data columns. This way, the system can select the
top-ranked adapted strategies and �lter out the rest.

5.1 Data Column Similarity
Measuring the similarity of data columns is a well-studied
problem in schema matching [37] and data pro�ling [2].
Building up on this line of research, we represent each data
column with a column pro�le. The column pro�les repre-
sent the syntactic and semantic similarity of data columns
to expose syntactic and semantic data errors. Syntactic simi-
larity can be captured based on the similarity of character
distributions. For example, data columns Age and Year are
syntactically similar as they have similar character distri-
butions, i.e., numerical characters. That is why a pattern
violation detection strategy that marks data values with non-
numerical characters would work well on both of these data
columns. Semantic similarity of columns can be captures
based on the overlap of the actual values. For example, data
columns City and Capital are semantically similar as they
have similar value distributions, i.e., city names. That is why
a rule violation detection strategy based on ZIP! City could
also be adapted to ZIP ! Capital.

The column pro�le describes the content of a data column
with its character and value distributions. Character distri-
bution is a probability distribution function that calculates
the probability of observing data cells containing character
ch in a data column d[:, j]. Formally,

p(ch |d[:, j]) = |{d[i, j] | 1  i  |d |,d[i, j] contains ch}|
|d | .

(4)
Value distribution is a probability distribution function that
calculates the probability of observing data cells equal to
value � in the data column d[:, j]. Formally,

p(� |d[:, j]) = |{d[i, j] | 1  i  |d |,d[i, j] equals to �}|
|d | . (5)

In conclusion, we can measure the similarity of two
columns by applying any similarity measure on their pro-
�les, i.e., character and value distributions. In practice, we
calculate the cosine similarity.

5.2 Strategy Adaptation and Selection
Once we have obtained the similarity of each column to
previously cleaned columns, we can adapt the strategies



Algorithm 2: StrategyFilterer(dnew, S , D, D⇤).
Input: new dataset dnew, set of error detection strategies S , set of historical

datasets D , set of historical ground truths D⇤ .
Output: set of promising error detection strategies S⇤ .

1 for each data column j 2 [1, |Anew |] of dataset dnew do
2 S 0j  {}; // set of all adapted strategies for column j
3 pdnew[:, j ]  generate pro�le for data column dnew[:, j];
4 for each dataset d 2 D do
5 for each data column j0 2 [1, |A |] of dataset d do
6 pd [:, j0]  generate pro�le for data column d [:, j0];
7 sim(dnew[:, j], d [:, j0]) similarity of pdnew[:, j ] and pd [:, j0] ;
8 for each strategy s 2 S do
9 F (s, d [:, j0]) F1 score of s on d [:, j0];

10 s 0  adapt s for dataset dnew;
11 score(s 0) assign the score of s 0;
12 S 0j  S 0j

–{s 0 };

13 S⇤j  {}; // set of promising adapted strategies for column j
14 do
15 s⇤  argmax

s2S0j
score(s);

16 S⇤j  S⇤j
–{s⇤ };

17 S 0j  S 0j � {s⇤ };
18 while adding s⇤ to S⇤j does not decrease the gain of S⇤j ;

19 S⇤  –|Anew |
j=1 S⇤j ;

for the dataset at hand, rank the strategies based on their
relevance, and select the most promising subset of them.
Algorithm 2 shows how Raha leverages the similarity

between a column dnew[:, j] and another column d[:, j 0] to
select the promising error detection strategies for the new
column dnew[:, j]. The algorithm consists of four main steps.

First, the similarities between each column dnew[:, j] of the
new dataset dnew and each column d[:, j 0] from any dataset d
is computed according to the discussion in the previous sec-
tion (line 7). Second, Raha retrieves the stored F1 score of
the strategy s on column d[:, j 0], i.e., F (s,d[:, j 0]) (line 9).

Third, Raha might need to modify the strategy s to make
it compatible to run on the new column dnew[:, j] (line 10).
For an outlier detection, a pattern violation detection, or a
knowledge base violation detection strategy, this modi�ca-
tion is not necessary. Raha can simply run the same strategy
on the new data column. However, for a rule violation de-
tection strategy, which is schema dependent, Raha needs to
modify the rules based on the schema of the new dataset.
Suppose, we have a functional dependency checker sj01!j02
that has detected data errors on the data columns d[:, j 01] and
d[:, j 02] of the historical dataset d . Suppose, Raha identi�es
the historical data column d[:, j 01] similar to the new data col-
umn dnew[:, j]. Therefore, Raha translates the strategy sj01!j02
to the strategy sj!q for the new dataset dnew. To adapt the
strategy sj01!j02 , Raha replaces the data column d[:, j 01] with
its corresponding data column dnew[:, j] and the data column
d[:, j 02] with its most similar data column dnew[:,q] inside the
new dataset.

Fourth, Raha assigns a score to each updated error detec-
tion strategy s 0 (line 11). The score is the product of the sim-
ilarity of data columns dnew[:, j] and d[:, j 0] and the F1 score
of strategy s on data column d[:, j 0]. Formally,

score(s 0) = sim(dnew [:, j],d[:, j 0]) ⇥ F (s,d[:, j 0]). (6)

The score will be high if the data columnsdnew[:, j] andd[:, j 0]
are similar and the strategy s has had a high F1 score on the
data column d[:, j 0], indicating that the updated strategy s 0
will be promising for the data column dnew[:, j].

We can sort the scored strategies S 0j for each data col-
umn dnew[:, j] to pick only top-scored strategies per data col-
umn. A threshold-free approach to select the most promising
subset of the strategies is to apply a gain function that has
been used in the literature [3]. The idea is to add the top-
scored strategies s⇤ 2 S 0j iteratively to the set of promising
strategies S⇤j (lines 13 to 18), until adding the next best strat-
egy decreases the following gain function [3], where the gain
reaches a local maxima:

gain(S⇤j ) =
’
s 2S⇤j

score(s)� 1
2

’
s 2S⇤j

’
s 0,s 2S⇤j

|score(s)� score(s 0)|.

(7)
At the end, the set of promising error detection strategies S⇤
is the union of the promising strategies over all the data
columns (line 19).

In Algorithm 2, Raha iterates over all the historical datasets
(line 4) and their data columns (line 5). Instead, it is possible to
create data column indexes such as MinHash [12] to quickly
�nd relevant historical datasets and data columns for a new
data column. However, as the number of historical cleaned
datasets is usually limited (e.g., 8 in our experimental setting),
we ignore this optimization.

6 EXPERIMENTS
Our experiments aim to answer the following questions.
(1) How does our system compare to existing error detection
approaches? (2) What is the impact of each feature group?
(3) How does the sampling a�ect the system convergence?
(4) How does our strategy �ltering approach compare to
other techniques? (5) How do user labeling errors a�ect the
system performance? (6) How does the system performance
scale in the number of rows and columns? (7) How does the
choice of the classi�cation model a�ect the system perfor-
mance? Due to the space limitation, the last two experiments
are presented in Appendix B. We also provide a case study
on the user labeling procedure in Appendix C.

6.1 Setup
We evaluate our system on 8 datasets that are described
in Table 4. Hospital and Flights are two real-world datasets
that we have obtained along with their ground truth from



Table 4: Dataset characteristics. The error types are
missing value (MV), typo (T), formatting issue (FI), and
violated attribute dependency (VAD) [38].

Name Size Error Rate Error Types

Hospital 1000 ⇥ 20 0.03 T, VAD
Flights 2376 ⇥ 7 0.30 MV, FI, VAD
Address 94306 ⇥ 12 0.14 MV, FI, VAD
Beers 2410 ⇥ 11 0.16 MV, FI, VAD
Rayyan 1000 ⇥ 11 0.09 MV, T, FI, VAD
Movies 7390 ⇥ 17 0.06 MV, FI
IT 2262 ⇥ 61 0.20 MV, FI
Tax 200000 ⇥ 15 0.04 T, FI, VAD

a previous research project [39]. Address is a proprietary
dataset with ground truth. Beers is a real-world dataset that
has been collected by scraping the web and has been manu-
ally cleaned [28]. Rayyan [33] and IT [1] are also real-world
datasets that were cleaned by the dataset owners themselves.
Movies is an available dataset in the Magellan repository [19].
We used the existing labels for the duplicate tuples to pro-
vide ground truth for this dataset. Tax is a large synthetic
dataset from the BART repository [6]. We use this dataset to
evaluate the scalability of Raha.
We leverage di�erent evaluation measures to evaluate

our system. We report precision, recall, and the F1 score to
evaluate the e�ectiveness. We also report the runtime in
seconds to evaluate the e�ciency. We report the number
of labeled tuples to evaluate the human involvement. Since
our tuple sampling approach is probabilistic, we report the
evaluation measures as the mean of 10 independent runs.
For the sake of readability, we omit the ±1% in our plots as
the standard deviations are always less than 1%.

As the default parameter setting, we incorporate all the fea-
ture groups into our system. We use Gradient Boosting [26]
as the classi�cation model. We set the labeling budget of
the user to �labels = 20. We run all the experiments on
an Ubuntu 16.04 LTS machine with 28 2.60 GHz cores and
264 GB memory. Our system is available online1.

6.2 Comparison with the Baselines
Stand-alone error detection tools.We compare Rahawith
three stand-alone error detection tools in Table 5. dBoost [36]
is an outlier detection tool. NADEEF [18] is a rule-based
data cleaning system. KATARA [17] uses knowledge bases to
detect errors. ActiveClean [32] is a machine learning-based
data cleaning approach. We detail each baseline approach
and its usage in Appendix A.

Table 5 shows that our approach outperforms all the stand-
alone error detection tools on all the datasets in terms of
F1 score by at least 12% and up to 42%. Our con�guration-
free error detection system only needs a limited number of
labeled tuples, i.e., �labels = 20 for the reported numbers.
1https://github.com/BigDaMa/raha

dBoost, NADEEF, and KATARA yield low recall because
they all target speci�c types of errors: dBoost marks statisti-
cal outliers as errors, NADEEF targets mostly errors detected
by user-de�ned integrity rules, and KATARAmarks as errors
those data values that do not conform to the entity rela-
tionships inside the knowledge base. In other words, these
tools cannot capture many of the errors detected by Raha.
The low precision of dBoost is due to the applied heuristics,
which outlying legitimate values as errors. NADEEF also
has low precision because, similar to other integrity rules-
based approaches, it reports errors in a coarse granular form,
i.e., in the form of violations that consist of multiple data
cells. KATARA has low precision due to the ambiguity of
concepts that leads to a mismatch between the concepts of
the data at hand and those in the knowledge base. In terms of
user involvement, dBoost, NADEEF, and KATARA need input
con�gurations that should be carefully provided by the user.

The poor performance of ActiveClean is due to its assump-
tions. First, ActiveCleanworks tuple wise instead of cell wise,
i.e., it outputs dirty tuples instead of cells. This setting leads
to poor precision as not all the data cells in an outputted
tuple are actually dirty. Second, ActiveClean assumes the
features are given by the user and TF-IDF featurization is
just a backup plan. TF-IDF does not represent the data qual-
ity issues of each data cell e�ectively. Third, ActiveClean
assumes the existence of a machine learning task that sup-
ports the tuple sampling strategy and is not designed for
general-purpose error detection. ActiveClean also leveraged
the same number of labeled tuples as Raha, i.e., �labels = 20.
In the following, we also provide a tuple-wise comparison.
Tuple-wise error detection approaches. Since Active-
Clean was designed for detecting erroneous tuples, we also
compare Raha to ActiveClean in terms of correctness and
completeness of outputted erroneous tuples.

As shown in Table 6, Raha outperformsActiveClean also in
terms of tuple-wise F1 score on all the datasets. Both systems
deliver perfect results on the Beers and IT datasets because
these datasets contain data columns that are completely er-
roneous. The tuple-wise error detection is trivial on these
datasets because all the tuples are dirty. For further investi-
gation, we removed those columns from the datasets. Now,
Raha clearly outperforms ActiveClean; its F1 scores are 0.95
and 1.0 on the Beers and IT datasets, respectively, while they
are 0.64 and 0.90 for ActiveClean.
Error detection aggregators. We also compare the perfor-
mance of our system to three aggregators for error detection
in Figure 2. These aggregator approaches internally combine
multiple error detection strategies as our system does. We
detail each baseline approach and its usage in Appendix A.

• Min-k [1] outputs data cells that are marked by more
than k% of the error detection strategies.



Table 5: Comparison with the stand-alone error detection tools.
Approach Hospital Flights Address Beers Rayyan Movies IT

P R F P R F P R F P R F P R F P R F P R F

dBoost 0.54 0.45 0.49 0.78 0.57 0.66 0.23 0.50 0.31 0.54 0.56 0.55 0.12 0.26 0.16 0.18 0.72 0.29 0.00 0.00 0.00
NADEEF 0.05 0.37 0.09 0.30 0.06 0.09 0.51 0.73 0.60 0.13 0.06 0.08 0.74 0.55 0.63 0.13 0.43 0.20 0.99 0.78 0.87
KATARA 0.06 0.37 0.10 0.07 0.09 0.08 0.25 0.99 0.39 0.08 0.26 0.12 0.02 0.10 0.03 0.01 0.17 0.02 0.11 0.17 0.14
ActiveClean 0.02 0.14 0.03 0.28 0.94 0.44 0.14 1.00 0.25 0.16 1.00 0.28 0.09 1.00 0.16 0.02 0.01 0.01 0.20 1.00 0.33

Raha 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99

Table 6: Comparison in terms of detecting erroneous tuples.
Approach Hospital Flights Address Beers Rayyan Movies IT

P R F P R F P R F P R F P R F P R F P R F

ActiveClean 0.33 0.12 0.18 0.80 1.00 0.89 0.73 0.99 0.84 1.00 1.00 1.00 0.77 1.00 0.87 0.77 1.00 0.87 1.00 1.00 1.00

Raha 0.96 0.67 0.79 0.85 0.93 0.89 0.94 0.94 0.94 1.00 1.00 1.00 0.88 0.88 0.88 0.90 0.97 0.93 1.00 1.00 1.00
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Figure 2: Comparison with the error detection aggregators.

• Maximum entropy-based order selection [1] outputs the
union of the output of error detection strategies with
a high precision on an evaluated data sample.

• Metadata-driven approach [45] is a machine learning-
based aggregator that combines manually con�gured
stand-alone error detection tools.

As shown in Figure 2, Raha outperforms all the aggregator
approaches on all the datasets in terms of F1 score and user
labels. It converges faster requiring fewer labeled tuples. The
signi�cant superiority of Raha over min-k shows that Raha
covers various data error types. We assume that the user
knows the optimum k and plot the results of the best k .

6.3 Feature Impact Analysis
We analyze the impact of di�erent feature groups on the
performance of the system in Table 7. We run our system

with all the feature groups (row All). Then, we exclude each
feature group, one at a time, to analyze its impact. For ex-
ample, All - OD means Raha leverages all the feature groups
but the outlier detection ones. Here, we also report the e�ec-
tiveness of Raha when it uses TF-IDF features, which is the
featurization method of ActiveClean [32].
As shown in Table 7, Raha is robust against removing

feature groups as its performance does not collapse when
a feature group is excluded. However, depending on the er-
ror rate and prevalent data error types, removing a feature
group could reduce the performance more signi�cantly. For
example on the Hospital dataset, with hundreds of FDs, re-
moving the rule violation detection features decreases the
performance more severely. On the Movies dataset, where
the error rate is low and thus the data errors are mainly
outliers, removing the outlier detection features decreases
the performance more severely.



Table 7: System e�ectiveness with di�erent feature groups: outlier detection (OD), pattern violation detection
(PVD), rule violation detection (RVD), knowledge base violation detection (KBVD), and all together (All).
Feature Group Hospital Flights Address Beers Rayyan Movies IT

P R F P R F P R F P R F P R F P R F P R F

TF-IDF 0.98 0.10 0.18 0.63 0.88 0.73 0.84 0.57 0.68 0.73 0.80 0.76 0.91 0.58 0.70 0.19 0.04 0.07 0.92 0.97 0.95

All - OD 0.93 0.53 0.68 0.80 0.85 0.82 0.89 0.84 0.86 0.95 0.95 0.95 0.78 0.72 0.75 0.66 0.82 0.73 0.99 0.98 0.98
All - PVD 0.95 0.62 0.75 0.83 0.84 0.83 0.87 0.89 0.88 0.92 0.94 0.93 0.74 0.74 0.74 0.77 0.84 0.80 0.98 0.97 0.97
All - RVD 0.75 0.37 0.50 0.80 0.78 0.79 0.86 0.87 0.86 0.97 0.98 0.97 0.82 0.78 0.80 0.92 0.90 0.91 0.99 0.98 0.98
All - KBVD 0.95 0.60 0.74 0.85 0.78 0.81 0.85 0.76 0.80 0.98 0.98 0.98 0.83 0.76 0.79 0.80 0.88 0.84 0.99 0.97 0.98

All 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99

Interestingly, the TF-IDF featurization of ActiveClean leads
to higher F1 score using Raha’s sampling approach. However,
the overall performance with word-level TF-IDF features is
always worse than the full feature set of Raha.

6.4 Sampling Impact Analysis
We analyze the impact of our sampling approach on the per-
formance of the system in Figure 3. In particular, we compare
two versions of our system with two di�erent sampling ap-
proaches. Uniform sampling approach selects tuples for user
labeling according to a uniform probability distribution [45].
On the other hand, our proposed clustering-based sampling
approach �rst selects tuples based on the existing clusters of
data cells and then propagates the labels through the clusters.
As shown in Figure 3, our clustering-based sampling ap-

proach speeds up the convergence of the system. This higher
convergence speed is more obvious on datasets with lower
error rates, such as Hospital and Movies. On datasets with
low error rates, it is harder to �nd enough dirty data cells
to train the classi�ers. However, our clustering-based sam-
pling approach addresses this issue by using additional noisy
labels from each cluster.

6.5 Strategy Filtering Impact Analysis
We analyze the e�ect of strategy �ltering via historical data
on the performance of Raha. Using the datasets at hand, we
set up the experiment the following way. For each run, we
consider one of the datasets as the new dirty dataset dnew
and the rest of datasets as the set of historical datasets D, ac-
cording to the well-known leave-one-out methodology [40].
Then, we select only the promising error detection strategies
according to the approach described in Section 5. This way,
we analyze the e�ect of limited computational resources
for feature extraction. Note that we consider the runtime
of strategy �ltering (Section 5) and feature extraction (Sec-
tion 4.2). Feature extraction clearly dominates the runtime
of our system as it requires running multiple error detection
strategies on the dataset.
Ideally, historical data should contain datasets from the

same domain of the new dataset. However, the assumption
that the user always has similar datasets in the historical

data is strong. Thus, we only assume that the user has some
cleaned datasets in historical data that may have some similar
data columns (e.g., City and ZIP) to the new dataset. Even
within our set of diverse datasets from di�erent domains, we
still can �nd similar columns and �lter irrelevant strategies
to improve the runtime.
Figure 4 shows the runtime of Raha with and without

strategy �ltering. The runtime is signi�cantly improved by
more than an order of magnitude as the system needs to run
only a fraction of all possible error detection strategies.
We also compare our strategy �ltering approach via his-

torical data to other strategy �ltering approaches to better
evaluate its e�ectiveness. Figure 5 shows the F1 score of
�ve di�erent approaches. We leverage the ground truth of
datasets to evaluate the F1 score of all the error detection
strategies to sort them accordingly. Thus, the �rst and sec-
ond approaches are Raha with the least and most e�ective
strategies as features. These two extreme approaches could
be a lower and an upper bound for the e�ectiveness of any
other strategy �ltering approach. The third approach is Raha
with a uniform strategy �ltering that uniformly picks error
detection strategies as the features. Since this approach is
probabilistic, we repeat it 5 times and report the mean and
standard deviation. The fourth and �fth approaches are Raha
with our strategy �ltering via historical data and Raha with-
out any strategy �ltering, respectively. Note that the number
of selected strategies is the same for all the strategy �ltering
approaches and is computed by Raha.

As shown in Figure 5, our strategy �ltering approach via
historical data outperforms the least e�ective strategies se-
lection and the uniform strategy selection approaches. The
e�ectiveness of Raha with strategy �ltering via historical
data is slightly lower than the most e�ective strategies se-
lection approach. Our strategy �ltering via historical data
approach can achieve almost the same e�ectiveness without
running or evaluating any strategy on the new dataset. Note
that the e�ectiveness of Raha with no strategy �ltering is
higher than the most e�ective strategies selection approach.
This shows that even ine�ective error detection strategies
still can add some information to the feature vector.
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Figure 3: System e�ectiveness with di�erent sampling approaches.
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Figure 4: System e�ciency with/without strategy �l-
tering via historical data.
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Figure 5: System e�ectiveness with di�erent strategy
�ltering approaches. The numbers of selected strate-
gies are denoted inside the brackets.

Generally, the results of the approach based on histori-
cal data show how column pro�les e�ectively capture the
data quality issues of the datasets. For example, the selected
promising strategies for the Hospital dataset are mainly His-
togram modeling strategies that are e�ective on this dataset.
On the other hand, the selected promising strategies for the
Address dataset are mainly functional dependency checkers
that involve attributes ZIP, City, and State. Our column pro-
�les could e�ectively map these data columns to similar data
domains in Hospital and Beers.

6.6 User Labeling Error Impact Analysis
In Figure 6, we compare the con�ict resolution functions
for label propagation from Section 4.4 in the presence of
user labeling errors. The erroneous user labels are randomly
distributed across data cells.
As shown in Figure 6, Raha’s e�ectiveness drops slightly

with increased user labeling errors. The decline is more se-
vere on the Hospital dataset because this dataset contains
many similar data errors, i.e., typos by random injection of
the character "x". Having wrong user labels for such similar
data errors confuses the classi�ers. The majority-based con-
�ict resolution function fares better than its homogeneity-
based counterpart in the presence of user labeling errors
because the latter does not operate any label propagation if
user’s labels are contradictory. The majority-based con�ict
resolution function is more robust in these situations. Under
the assumption of perfect user labels, both methods perform
nearly equal. Since both solutions cannot be considered as
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Figure 6: System e�ectiveness in the presence of user
labeling errors with (a) homogeneity-based and (b)
majority-based con�ict resolution functions.

robust on all datasets, we believe that handling erroneous
user labels is an interesting direction for future research.

7 RELATEDWORK
Precon�gured error detection. This line of work assumes
that an error detection tool is well con�gured before be-
ing used. For outlier detection, users have to manually
set the parameters [9]. For rule violation detection, users
have to provide functional dependencies (FDs) [4], con-
ditional functional dependencies (CFDs) [23] and its vari-
ants [11, 31], denial constraints (DCs) [16], or user-de�ned
functions (UDFs) [8, 18]. Properly con�guring all tools is
tedious, which requires the user to know both the dataset
and the error detection tools. In contrast, Raha relieves the
user from the tedious task of tool con�guration and still
outperforms the precon�gured approaches.
Aggregated error detection. Another line of research ag-
gregates the results of various error detection techniques
through voting, precision-based ordering [1] or ensembling
methods [45]. Again the assumption for these approaches is
that the user has already con�gured each error detection tool.
Raha does not make such assumptions as we automatically
generate many con�gurations. As our experiments show,
Raha clearly outperforms these techniques.
Interactive error detection. Instead of using precon�g-
ured error detection tools, another line of work is to have
human in the loop. To clean the data, the backend data
cleaning engine generalizes the user feedback through data
transformations (e.g., Trifacta [21], BlinkFill [42], and Fal-
con [27]) or machine learning models (e.g., GDR [46], and
ActiveClean [32]). The general challenge of the human-in-
the-loop framework is the class imbalance problem, where
the number of dirty data values is much lower than the clean
values. This class imbalance setting usually leads to a large
number of required user labels. In contrast, Raha exploits

clustering-based sampling with label propagation that sig-
ni�cantly reduces the number of required user labels.
Data pro�ling.Many data pro�ling algorithms have been
studied to detect FDs [2, 10], CFDs [24], and DCs [15]. How-
ever, discovering rules from dirty data will produce many
false positives [15], requiring the users to pick genuine rules
from discovered candidate rules. That is why Raha does not
require error detection strategies to be perfect.
Data repairing. There have been a great many works on
data repairing, such as ActiveClean [32], HoloClean [39],
and NADEEF [18]. Our work is complementary to data re-
pairing as we focus on error detection. The output of Raha,
i.e., detected data errors, later would be inputted to these
data repairing approaches. However, we compared Raha to
the error detection components of these systems.

8 CONCLUSION
We proposed a novel error detection system that relieves the
user from the tedious task of selecting and con�guring error
detection algorithms. Raha systematically generates a wide
range of algorithm con�gurations and encodes their output
into feature vectors for all data cells. Raha then combines clus-
tering, label propagation, and classi�cation per data column
and learns to predict the labels of all data cells inside each
data column. Furthermore, we proposed a strategy �ltering
approach to �lter irrelevant error detection strategies based
on the optionally available historical data. Our experiments
clearly show how Raha outperforms existing baselines.

While Raha delivers outstanding performance in a hassle-
free way, it has some limitations. The con�guration-free
nature of Raha requires us to run many error detection strate-
gies. Like many machine learning approaches, Raha cannot
provide any guarantee that with how many algorithms, con-
�gurations, or even user labels, the user can get the desired
performance. Raha tries to limit the in�nite set of all possi-
ble algorithms/con�gurations with some heuristics. These
search space pruning heuristics exclude some potentially rel-
evant strategies, such as temporal functional dependencies.
There are several possible improvements to Raha. The

�rst is runtime optimization by parallelizing the work�ow.
Although Raha supports strategy �ltering, its pipeline is still
sequential. The second is to reduce the user labeling cost by
replacing expert users with crowdsourcing, which requires
handling noisy labels. Handling user labeling errors and
providing the user with important context and metadata for
the labeling process are important future research directions.
Currently, Raha requires the user to label one tuple at a time,
which might not provide enough context for identifying
some semantic error types, such as functional dependency
violations, and systematic data errors. Finally, we also plan
to extend our system to incorporate data repairing as well.
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APPENDIX
We �rst detail our baselines. Then, we present two more
supplementary experiments. Finally, we provide a case study
on the user labeling procedure.

A DETAILS OF THE BASELINES
The detailed description of the baselines is as follows.

• dBoost [36] is an outlier detection tool that contains
several algorithms such as histogram and Gaussian
modeling. dBoost also provides tuple expansion fea-
ture to expand string values into numerical values and
�nd string outliers as well. We applied grid search to
con�gure dBoost algorithms. In other words, we ran
di�erently con�gured versions of dBoost algorithms
and evaluated the results on a data sample to report
the best-con�gured algorithm with the highest perfor-
mance numbers.

• NADEEF [18] is a rule-based data cleaning system that
takes integrity rules in the form of denial constraints
and outputs the violating data cells. We ran NADEEF
with data constraints (i.e., integrity rules and column
patterns) that are provided by the datasets owners.

• KATARA [17] is a data cleaning system powered by
knowledge bases that takes a set of entity relationships
and outputs the violating data cells. We ran KATARA
with all the entity relationships that are available in
the DBpedia knowledge base [7].

• ActiveClean [32] is a machine learning-based data
cleaning approach. ActiveClean uses TF-IDF features
to train a classi�er that can identify dirty tuples. Tu-
ples are sampled for labeling based on their usefulness
for a given machine learning application. Since our
machine learning task is error detection, we sample
the tuples based on their probability of being dirty. In
fact, we sample dirty tuples that are outputted by the
error detection classi�er with a uniform probability.
We also report the ActiveClean performance with the
same number of labeled tuples as Raha, i.e., 20 tuples.

• Min-k [1] is a simple aggregation approach that out-
puts data cells that are marked by more than k% of the
error detection strategies. We ran the approach with
k 2 {0%, 20%, 40%, 60%, 80%} and report the highest
performance numbers. Note that k = 0% corresponds
to the union of all strategies’ outputs.

• Maximum entropy-based order selection [1] evaluates
the error detection strategies on a data sample. Then,
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Figure 7: Scalability w.r.t. (a) the number of rows and
(b) the number of columns. The number on each point
depicts the F1 score.

the approach picks the error detection strategy with
the highest precision �rst, evaluates its output, and
picks the next best strategy. Whenever the approach
picks one strategy, there is a point on the chart. Usually,
picking the �rst error detection strategy requires the
evaluation of more than 100 tuples.

• Metadata driven approach [45] combines the output of
manually con�gured stand-alone error detection tools
and metadata in a feature vector. Then, the approach
trains ensemble classi�ers with the help of the feature
vectors and a labeled data sample. We use this aggre-
gator on top of the stand-alone tools, using the same
best-e�ort con�gurations shown in Table 8.

Table 8 shows the con�guration of stand-alone error de-
tection tools for each dataset.

B SUPPLEMENTARY EXPERIMENTS
B.1 System Scalability
Figure 7 shows the runtime and F1 score of Raha on Tax and
IT datasets, by varying the number of rows and columns.
While the runtime increases linearly, the F1 score stays al-
most the same. Interestingly, the runtime of Raha with strat-
egy �ltering re�ects a much steeper linear growth.

B.2 Classi�cation Model Impact Analysis
We analyze the impact of the classi�cation model on the
performance of the system in Table 9. In particular, we tested
AdaBoost, Decision Tree, Gradient Boosting, Gaussian Naive
Bayes, Stochastic Gradient Descent, and Support Vectors Ma-
chines, all implemented in scikit-learn Python module [35].
Note that we applied grid search to �nd the best hyperpa-
rameters for each classi�cation model.

As shown in Table 9, the choice of classi�cationmodel does
not a�ect the performance of the system signi�cantly be-
cause the main impact of the system comes from the features



Table 8: Con�guration of stand-alone error detection tools for each dataset.
Dataset dBoost NADEEF KATARA ActiveClean

Hospital Histogram, 0.9, 0.1 city ! zip, city ! county, zip ! city, zip ! state, zip ! county, county !
state, index (digits), provider number (digits), zip (5 digits), state (2 alphabets),
phone (digits)

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Flights Gaussian, 1.3 �ight! actual departure time, �ight! actual arrival time, �ight! scheduled
departure time, �ight! scheduled arrival time

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Address Gaussian, 1.0 address ! state, address ! zip, zip ! state, state (2 alphabets), zip (digits),
ssn (digits)

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Beers Histogram, 0.9, 0.3 brewery id! brewery name, brewery id! city, brewery id! state, brewery
id (digits), state (2 alphabets)

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Rayyan Histogram, 0.7, 0.3 journal abbreviation! journal title, journal abbreviation! journal issn, journal
issn! journal title, authors list (not null), article pagination (not null), journal
abbreviation (not null), article title (not null), article language (not null), jour-
nal title (not null), journal issn (not null), article journal issue (not null), article
journal volume (not null), journal created at (date)

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Movies Gaussian, 2.5 id ("tt" + digits), year (4 digits), rating value (�oat), rating count (digits), dura-
tion (digits + "min")

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

IT Gaussian, 1.0 support level (not null), app status (not null), curr status (not null), tower (not
null), end users (not null), account manager (not null), decomm dt (not null),
decomm start (not null), decomm end (not null), end users (not 0), retirement (not
out of de�ned domain), emp dta (not out of de�ned domain), retire plan (not out
of de�ned domain), division (not out of de�ned domain), bus import (not out of
de�ned domain)

All Entity Relation-
ships in DBpedia

TF-IDF Features, Sampling
Based on Erroneous Proba-
bility, 20 Labeled Tuples

Table 9: System e�ectiveness with di�erent classi�cation models.
Classi�cation Model Hospital Flights Address Beers Rayyan Movies IT

P R F P R F P R F P R F P R F P R F P R F

AdaBoost 0.96 0.56 0.70 0.83 0.79 0.81 0.92 0.82 0.87 0.99 1.00 1.00 0.80 0.78 0.78 0.81 0.87 0.84 0.98 0.98 0.98
Decision Tree 0.95 0.57 0.71 0.82 0.79 0.80 0.90 0.81 0.85 1.00 0.99 0.99 0.79 0.75 0.77 0.82 0.87 0.84 0.98 0.98 0.98
Gradient Boosting 0.94 0.59 0.72 0.82 0.81 0.81 0.91 0.80 0.85 0.99 0.99 0.99 0.81 0.78 0.79 0.85 0.88 0.86 0.99 0.99 0.99
Gaussian Naive Bayes 0.99 0.45 0.61 0.88 0.69 0.77 0.84 0.84 0.84 1.00 0.97 0.98 0.79 0.62 0.69 0.53 0.88 0.66 0.99 0.98 0.98
Stochastic Gradient Descent 0.89 0.52 0.65 0.84 0.76 0.80 0.83 0.73 0.78 0.99 0.98 0.98 0.82 0.78 0.80 0.80 0.85 0.82 0.99 0.97 0.98
Support Vectors Machines 0.98 0.39 0.56 0.83 0.77 0.80 0.66 0.36 0.47 0.99 0.96 0.98 0.82 0.79 0.80 0.74 0.85 0.79 0.97 0.98 0.98

and the sampling approach. In our current prototype, we
deploy the Gradient Boosting classi�cation model because
it is an advanced ensemble learning model that internally
combines multiple simpler classi�cation models [26].

C CASE STUDY: USER LABELING
We provide a case study to clarify the user labeling procedure.
Table 10 shows the 20 tuples that Raha sampled on the Flights
dataset. As mentioned in Section 4, the user takes one tuple
at a time and labels its data cells. Ideally, the user should
label all the red cells as dirty and the rest as clean.

The Flights dataset contains errors of di�erent types [38].
Missing values, such as the scheduled departure time in
tuple 3, and formatting issues, such as 11:25aDec 1 as the
scheduled departure time in tuple 4, can easily be identi-
�ed by a user. The user usually identi�es these data error
types via either domain expertise or some sort of master data.
However, the tuples also include erroneous values that are
not easily detectable. For example, the reported departure

time 2:03 p.m. in tuple 3 does not look erroneous without fur-
ther investigation. Although this data value seems correct,
it is not the correct departure time of the �ight AA-1279-
DFW-PHX. In other words, this value violates the functional
dependency Flight ! Actual Departure Time. In this particu-
lar case, the user needs to look at a master data and check
the actual departure time of the �ight AA-1279-DFW-PHX.
Note that knowing the violated functional dependency is
not a guarantee for a correct label as typically multiple data
cells are involved in the violation of a functional dependency,
e.g., left-hand side or right-hand side value. Thus, not every
involved cell in a violation can be considered to be an error.

We also report the F1 score of Raha on erroneous columns
of the Flights dataset in Figure 8. Whenever a labeled tuple
covers a new unseen data error type, the F1 score is im-
proved signi�cantly. For example, by labeling tuple 2, the
F1 score improves signi�cantly on columns Actual Departure
Time and Actual Arrival Time as Raha learns the missing
value data error type for these columns. Labeling tuple 3
improves the F1 score on column Actual Departure Time as



Table 10: 20 tuples that the user labeled on the Flights dataset. The red data cells are dirty and the rest are clean.
ID Source Flight Scheduled Departure Time Actual Departure Time Scheduled Arrival Time Actual Arrival Time

1 aa AA-3-JFK-LAX 12:00 p.m. 12:11 p.m. 3:15 p.m. 3:16 p.m.

2 usatoday AA-1886-BOS-MIA 10:45 a.m. 2:20 p.m.

3 airtravelcenter AA-1279-DFW-PHX 2:03 p.m. 3:13 p.m.

4 mytripandmore AA-1544-SAN-ORD 11:25aDec 1 11:20aDec 1 5:25 p.m. 4:56 p.m.

5 weather UA-2704-DTW-PHX 11:15 a.m. 1:40 p.m.

6 �ightaware AA-431-MIA-SFO 8:35 a.m. 8:51 a.m. 11:22 a.m. 11:33 a.m.

7 panynj AA-404-MIA-MCO 6:45 a.m. 6:58 a.m. 7:45 a.m. 7:32 a.m.

8 quicktrip AA-3823-LAX-DEN 9:00 p.m. 9:06 p.m. (Estimated) 12:15 a.m. 11:49 p.m. (Estimated)

9 foxbusiness AA-3-JFK-LAX 12:00 p.m. 12:12 p.m. 3:15 p.m. 3:16 p.m.

10 orbitz UA-6273-YYC-SFO 7:35aDec 1 7:27aDec 1 9:43aDec 1 8:45aDec 1

11 �ightarrival UA-828-SFO-ORD 11:08 p.m. 5:11 a.m.Dec 02

12 travelocity UA-3515-IAD-MSP Not Available 8:24 a.m. Not Available 9:56 a.m.

13 aa AA-3063-SLC-LAX 8:20 p.m. 8:39 p.m. 9:20 p.m.

14 hello�ight AA-1733-ORD-PHX 7:59 p.m. 10:31 p.m.

15 orbitz AA-616-DFW-DTW 10:00aDec 1 9:59aDec 1 12:35 p.m. 1:27 p.m.

16 gofox UA-2906-PHL-MCO 3:50 p.m. 4:46 p.m. 6:23 p.m. 6:35 p.m.

17 weather AA-2268-PHX-ORD 7:15 a.m. 7:23 a.m. 11:35 a.m. 11:04 a.m.

18 �ylouisville AA-466-IAH-MIA 6:00 a.m. 6:08 a.m. 9:20 a.m. 9:05 a.m.

19 panynj AA-3-JFK-LAX 12:00 p.m. 12:12 p.m. 3:15 p.m. 3:16 p.m.

20 �ylouisville UA-1500-IAH-GUA 9:16 a.m. 11:45 a.m.
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Figure 8: System e�ectiveness on di�erent columns of
the Flights dataset.

well, because the classi�er of this column learns that the
value is erroneous due to the violation of a functional de-
pendency. In fact, the classi�er learns that the FD checker
feature sFlight!Actual Departure Time is an important feature for

identifying data errors in column Actual Departure Time. La-
beling tuple 4 also improves the F1 score on column Actual
Departure Time, because the classi�er of this column learns
that values with the same type of formatting as 11:20aDec 1
are not desired. Interestingly, after labeling these four tuples,
the F1 score of Raha on columnActual Departure Time almost
converges, because there are no more di�erent data error
types in this column. Note that upon labeling some tuples,
the F1 score of Raha might slightly drop on some columns.
For example, labeling tuple 6 slightly drops the F1 score of
Raha on column Scheduled Arrival Time. While the classi�er
of this column learns that the value 11:22 a.m. is an error,
the classi�er over�ts and labels some clean values with a
similar format as data errors. However, the F1 score of the
classi�er again increases in later iterations by observing a
few more similar clean values. In fact, the classi�er learns
that, in contrast to other clean data cells, the cell with the
value 11:22 a.m. is erroneous due to a functional dependency
violation.


